

PHP 7 Programming Blueprints

Learn how to exploit the impressive power of PHP 7
with this collection of practical project blueprints –
begin building better applications for the web today!

Jose Palala
Martin Helmich

BIRMINGHAM - MUMBAI

PHP 7 Programming Blueprints

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2016

Production reference: 2061016

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-971-4

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Jose Palala
Martin Helmich

Copy Editor

Safis Editing

Reviewer

Shuvankar Sarkar

Project Coordinator

Ulhas Kambali

Commissioning Editor

Kunal Parikh

Proofreader

Safis Editing

Acquisition Editor

Chaitanya Nair

Indexer

Rekha Nair

Content Development Editor

Onkar Wani

Production Coordinator

Melwyn Dsa

Technical Editor

Murtaza Tinwala

Cover Work

Melwyn Dsa

About the Authors
Jose Palala has been working professionally with PHP for at least 8 years. He has
experience working with PHP frameworks such as Eden PHP, CodeIgniter, Laravel and
Zend.

He has worked for Philippine-based IT companies for at least 8 years, working on projects
ranging from internal corporate systems and CMS websites. In his spare time, he regularly
contributes back to the tech community in the Philippines.

I would like to thank everyone at Packt Publishing, it’s been great working with them since
Day 1. Super thanks to all to my colleagues, friends and family who have helped me to
become a better developer and have helped me become what I am today.

Martin Helmich holds a Master's degree in Computer Science from the University of
Applied Sciences in Osnabrück. He works as a software architect and specializes in building
distributed applications using web technologies and Microservice Architectures. Besides
programming in Go, PHP, Python and Node.JS, he also builds infrastructures using
configuration management tools like SaltStack and container technologies like Docker.

He is an open source enthusiast and likes to make fun of people who are not using Linux. In
his free time, you'll probably find him coding on one of his open source pet projects,
listening to music or reading science-fiction literature.

About the Reviewer
Shuvankar Sarkar is an IT analyst and experienced in C#, .NET, PHP and web
development.

He is a technology enthusiast and maintains his blog at h t t p : / / s h u v a n k a r . c o m /. You can
follow him on Twitter at @sonu041. He is interested in computer security as well.

I would like to thank my family for making my life easier and full of happiness.

http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/
http://shuvankar.com/

www.PacktPub.com
eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib

Table of Contents
Preface 1

Chapter 1: Create a User Profile System and use the Null Coalesce
Operator 6

The null coalesce operator 7
Separation of Concerns 8
Creating views 8
Create a profile input form 10
Admin system 13
Summary 17

Chapter 2: Build a Database Class and Simple Shopping Cart 18

Building the database abstraction class 19
Raw query method 19
Create method 19
Read method 20
Select all method 20
Delete method 21
Update method 21
first_of method 22
last_of method 22
iterate_over method 22
searchString method 22
Using the convert_to_json method to implement a simple API 23

Shopping Cart 23
Building the shopping items list 24

Item template rendering function 24
Adding checkboxes to the Shopping List page 27
Cookies in PHP 28
Building the Checkout page 29
Thank you page 32

Installing TCPDF 33
Admin for managing purchases 38
Summary 40

Chapter 3: Building a Social Newsletter Service 41

[ii]

Authentication system 41
Creating a social login for members 47
Member dashboard 52
Marketers dashboard 56

Administration system for managing marketers 57
Custom template for our newsletter 60
Link tracking 63
AJAX socket chat for support 66

Introduction to socket.io 66
Summary 73

Chapter 4: Build a Simple Blog with Search Capability using
Elasticsearch 75

Creating the CRUD and admin system 75
Seeding the post table 80
What is Elasticsearch? 80
Installing Elasticsearch and the PHP client 81

Building a PHP Elasticsearch tool 85
Adding documents to our Elasticsearch 87

Querying Elasticsearch 88
Installing Logstash 88
Setting up the Logstash configuration 89
Installing PHP Redis 89
Encoding and decoding JSON messages 91

Storing Apache logs in Elasticsearch 92
Getting filtered data to display with Highcharts 93

Dashboard app for viewing Elasticsearch logs 99
Simple search engine with result caching 101
Cache basics 103

Cache invalidation of Redis data 103
Using browser localStorage as cache 104
Working with streams 106
Storing and searching XML documents using PHP 108
Using Elasticsearch to search a social network database 108

Displaying randomized search engine results 110
Summary 112

Chapter 5: Creating a RESTful Web Service 113

RESTful basics 114
REST architectures 114
Common HTTP methods and response codes 115

First steps with the Slim framework 116

[iii]

Installing Slim 116
A small sample application 117

Accepting URL parameters 118
Accepting HTTP requests with a message body 119
The PSR-7 standard 120
Middleware 122

Implementing the REST service 124
Designing the service 124
Bootstrapping the project 125
Building the persistence layer with MongoDB 127
Adding and retrieving users 132
Listing and searching users 137
Deleting profiles 140
Validating input 143

Streams and large files 145
Profile image upload 145
Using GridFS storage 149

Summary 152

Chapter 6: Building a Chat Application 153

The WebSocket protocol 153
First steps with Ratchet 154

Architectural considerations 154
Getting started 155
Testing WebSocket applications 158
Playing with the event loop 159

Implementing the chat application 162
Bootstrapping the project server-side 162
Bootstrapping the HTML user interface 164
Building a simple chat application 165
Receiving messages 170
Sending messages 171
Testing the application 171
Keeping the connection from timing out 172

Deployment options 173
Bridging Ratchet and PSR-7 applications 176
Accessing your application via the web server 182
Adding authentication 183

Creating the login form 184
Checking the authorization 188

[iv]

Connecting users and messages 190
Summary 192

Chapter 7: Building an Asynchronous Microservice Architecture 193

The target architecture 193
ZeroMQ patterns 195

Request/reply pattern 195
Publish/subscribe pattern 196
Push/pull pattern 196

Bootstrapping the project 197
Building the inventory service 198

Getting started with ZeroMQ REQ/REP sockets 198
Using JsonRPC for communication 200

Making the inventory service multithreaded 205
Building the checkout service 209

Using react/zmq 209
Working with promises 211

Building the mailing service 219
Building the shipping service 223

PUSH/PULL for beginners 223
Fan-out/fan-in 228

Bridging ZeroMQ and HTTP 230
Summary 236

Chapter 8: Building a Parser and Interpreter for a Custom Language 237

How interpreters and compilers work 238
Languages and grammars 239
Your first PEG parser 242
Evaluating expressions 246
Building an Abstract Syntax Tree 249
Building a better interface 254
Evaluating variables 256
Adding logical expressions 259

Comparisons 260
The “and” and “or” operators 263
Conditions 265

Working with structured data 268
Working with objects 271
Optimizing the interpreter by adding a compiler 273
Verifying performance improvements 281

[v]

Summary 285

Chapter 9: Reactive Extensions in PHP 286

An introduction to observables 286
Introduction to event loop and ReactiveX 287

delay 289
defer 289
Scheduler 290
recursive-scheduler 290
map and flatMap 292
reduce 292
toArray 293
merge 294
do 294
scan 295
zip 296

Parsing logs through a Reactive scheduler 297
Event queues with ReactiveX 298
Summary 299

Index 300

Preface
PHP is a great language for developing web applications. It is essentially a server-side
scripting language that is also used for general-purpose programming. PHP 7 is the latest
version, which provides major backward-compatibility breaks and focuses on providing
improved performance and speed. With the rise in demand for high performance,
this newest version contains everything you need to build efficient applications. PHP 7
provides improved engine execution, better memory usage, and a better set of tools
allowing you to maintain high traffic on your websites with low-cost hardware and servers
through a multithreading web server.

What this book covers
Chapter 1, Create a User Profile System and use the Null Coalesce Operator, we'll discover new
PHP 7 features and build app for storing user profiles.

Chapter 2, Build a Database Class and Simple Shopping Cart, we'll create a simple database
layer library which will help us access our database. We'll cover some tips on making our
queries secure, and how to make our coding simpler and more succinct with PHP 7.

Chapter 3, Building a Social Newsletter Service, we'll be building a social newsletter service,
which will have a way for users to sign in using their social login and allow them to register
to a newsletter. We'll also make a simple admin system for managing the newsletters.

Chapter 4, Build a Simple Blog with Search Capability using Elasticsearch, you will learn how to
create a blog system, experiment with ElasticSearch and how to apply it in your code. Also,​
you will learn how to create a simple blog application and store data into MySQL.

Chapter 5, Creating a RESTful Web Service, shows you how create a RESTful web service
that can be used to manage user profiles. The service will be implemented using the Slim
micro framework and use a MongoDB database for persistence. The chapter also covers the
basics of RESTful web services, most importantly the common HTTP request and response
methods, the PSR-7 standard and PHP 7’s new mongodb extension.

Preface

[2]

Chapter 6, Building a Chat Application, describes the implementation of a real-time chat
application using WebSockets. You will learn how to use the Ratchet framework to build
stand-alone WebSocket and HTTP servers with PHP and how to connect to WebSocket
servers in a JavaScript client application. We will also discuss how you can implement
authentication for WebSocket applications and how to deploy them in a production
environment.

Chapter 7, Building an Asynchronous Microservice Architecture, covers the implementation of
a (small) microservice architecture. Instead of RESTful web services, you will use ZeroMQ
in this chapter for network communication, an alternative communication protocol that
focuses on asynchronicity, loose coupling and high performance.

Chapter 8, Building a Parser and Interpreter for a Custom Language, describes how to use the
PHP-PEG library to define a grammar and implement a parser for a custom expression
language that can be used to add end-user development features to enterprise applications.

Chapter 9, Reactive Extensions in PHP, here we'll look into the Reactive extensions library
for PHP, and and try to build a simple scheduled app.

What you need for this book
You’ll need to download and install PHP 7 from the official PHP website. You’ll also need
to install a Webserver such as Apache or Nginx configured to run PHP 7 by default.

If you are experienced with virtual machines, you can also use Docker containers and/or
Vagrant to build an environment with PHP 7 installed.

Who this book is for
The book is for web developers, PHP consultants, and anyone who is working on multiple
projects with PHP. Basic knowledge of PHP programming is assumed.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Let's
create a simple UserProfile class."

Preface

[3]

A block of code is set as follows:

function fetch_one($id) {
 $link = mysqli_connect('');
 $query = "SELECT * from ". $this->table . " WHERE `id` =' " . $id "'";
 $results = mysqli_query($link, $query);
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

'credit_card' => $credit_card,
'items' => //<all the items and prices>//,
'total' => $total,

Any command-line input or output is written as follows:

 mysql> source insert_profiles.sql

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Simply click on Allow
access and then click on OK."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

mailto:feedback@packtpub.com

Preface

[4]

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w . p

a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u b . c

o m / s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u b l

i s h i n g / P H P - 7 - P r o g r a m m i n g - B l u e p r i n t s. We also have other code bundles from our rich
catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /. Check
them out!

https://www.packtpub.com/books/info/packt/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/PHP-7-Programming-Blueprints
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Create a User Profile System and use the Null Coalesce Operator

[7]

Let's add two functions, also known as a method, inside the class to simply fetch the data
from the database:

function fetch_one($id) {
 $link = mysqli_connect('');
 $query = "SELECT * from ". $this->table . " WHERE `id` =' " . $id "'";
 $results = mysqli_query($link, $query);
}

function fetch_all() {
 $link = mysqli_connect('127.0.0.1', 'root','apassword','my_dataabase');
 $query = "SELECT * from ". $this->table . ";
 $results = mysqli_query($link, $query);
}

The null coalesce operator
We can use PHP 7's null coalesce operator to allow us to check whether our results contain
anything, or return a defined text which we can check on the views, this will be responsible
for displaying any data.

Let's put this in a file which will contain all the define statements, and call it:

//definitions.php
define('NO_RESULTS_MESSAGE', 'No results found');

require('definitions.php');
function fetch_all() {
 ...same lines ...
 $results = $results ?? NO_RESULTS_MESSAGE;
 return $message;
}

On the client side, we'll need to come up with a template to show the list of user profiles.

Let's create a basic HTML block to show that each profile can be a div element with several
list item elements to out 〮〰〠づach table.

In the follow4爲吠⼶㔷㌷t si we'll ne洠づ歮ts,界eto show and瘠〮〰㡳playing any data.

Create a User Profile System and use the Null Coalesce Operator

[8]

 if($name == null || $age === null) {
 return 'Name or Age need to be set';
 } else {

 return '<div>

 Name: ' . $name . '

 Age: ' . $age . '

 Country: ' . $country . '

 </div>';
 }
}

Separation of Concerns
In a proper MVC architecture, we need to separate the view from the models that get our
data, and the controllers will be responsible for handling business logic.

In our simple app, we will skip the controller layer since we just want to display the user
profiles in one public facing page. The preceding function is also known as the template
render part in an MVC architecture.

While there are frameworks available for PHP that use the MVC architecture out of the box,
for now we can stick to what we have and make it work.

PHP frameworks can benefit a lot from the null coalesce operator. In some codes that I've
worked with, we used to use the ternary operator a lot, but still had to add more checks to
ensure a value was not falsy.

Furthermore, the ternary operator can get confusing, and takes some getting used to. The
other alternative is to use the isSet function. However, due to the nature of the isSet
function, some falsy values will be interpreted by PHP as being a set.

Creating views
Now that we have our model complete, a template render function, we just need to create
the view with which we can look at each profile.

Create a User Profile System and use the Null Coalesce Operator

[9]

Our view will be put inside a foreach block, and we'll use the template we wrote to render
the right values:

//listprofiles.php

<html>
<!doctype html>
<head>
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css
">
</head>
<body>

<?php
foreach($results as $item) {
 echo profile_template($item->name, $item->age, $item->country;
}
?>
</body>
</html>

Let's put the code above into index.php .

While we may install the Apache server, configure it to run PHP, install new virtual hosts
and the other necessary features, and put our PHP code into an Apache folder, this will take
time. So, for the purposes of testing this out, we can just run PHP's server for development.

To run the built-in PHP server (read more at
http://php.net/manual/en/features.commandline.webserver.php) we will use the folder
we are running, inside a terminal:

php -S localhost:8000

If we open up our browser, we should see nothing yet, No results found. This means we
need to populate our database.

If you have an error with your database connection, be sure to replace the correct database
credentials we supplied into each of the mysql_connect calls that we made.

To supply data to our database, we can create a simple SQL script like this:1.

INSERT INTO user_profiles ('Chin Wu', 30, 'Mongolia');
INSERT INTO user_profiles ('Erik Schmidt', 22, 'Germany');
INSERT INTO user_profiles ('Rashma Naru', 33, 'India');

http://php.net/manual/en/features.commandline.webserver.php

Create a User Profile System and use the Null Coalesce Operator

[10]

Let's save it in a file such as insert_profiles.sql. In the same directory as the2.
SQL file, log on to the MySQL client by using the following command:

 mysql -u root -p

Then type use <name of database>:3.

 mysql> use <database>;

Import the script by running the source command:4.

 mysql> source insert_profiles.sql

Now our user profiles page should show the following:

Create a profile input form
Now let's create the HTML form for users to enter their profile data.

Our profiles app would be no use if we didn't have a simple way for a user to enter their
user profile details.

We'll create the profile input form like this:

//create_profile.php

<html>
<body>
<form action="post_profile.php" method="POST">

 <label>Name</label><input name="name">

Create a User Profile System and use the Null Coalesce Operator

[12]

Instead of creating a parameter in our function to hold each argument as we did with our
profile template render function, we can simply use an array to hold our values.

This way, if a new field needs to be inserted into our database, we can just add another field
to the SQL insert statement.

While we are at it, let's create the edit profile section.

For now, we'll assume that whoever is using this edit profile is the administrator of the site.

We'll need to create a page where, provided the $_GET['id'] has been set, that the user
that we will be fetching from the database and displaying on the form. Here is how that
code will look like:

<?php
require('class/userprofile.php');//contains the class UserProfile into

$id = $_GET['id'] ?? 'No ID';
//if id was a string, i.e. "No ID", this would go into the if block
if(is_numeric($id)) {
 $profile = new UserProfile();
 //get data from our database
 $results = $user->fetch_id($id);
 if($results && $results->num_rows > 0) {
 while($obj = $results->fetch_object())
 {
 $name = $obj->name;
 $age = $obj->age;
 $country = $obj->country;
 }
 //display form with a hidden field containing the value of the ID
?>

 <form action="post_update_profile.php" method="post">
 <label>Name</label><input name="name" value="<?=$name?>">
 <label>Age</label><input name="age" value="<?=$age?>">
 <label>Country</label><input name="country" value="<?=country?>">

</form>

 <?php
 } else {
 exit('No such user');
 }
} else {
 echo $id; //this should be No ID';
 exit;

Create a User Profile System and use the Null Coalesce Operator

[14]

<?php
}

There's one thing that we haven't yet created: A delete_profile.php page. The view and
edit pages have been discussed already.

Here's how the delete_profile.php page would look:

<?php

//delete_profile.php
$connection = mysqli_connect('localhost','<username>','<password>',
'<databasename>');

$id = $_GET['id'] ?? 'No ID';

if(is_numeric($id)) {
mysqli_query($connection, "DELETE FROM userprofiles WHERE id = '" .$id .
"'");
} else {
 echo $id;
}
i(!is_numeric($id)) {
exit('Error: non numeric \$id');
 } else {
echo "Profile #" . $id . " has been deleted";

?>

Of course, since we might have a lot of user profiles in our database, we have to create a
simple pagination. In any pagination system, you just need to figure out the total number of
rows and how many rows you want displayed per page. We can create a function that will
be able to return a URL that contains the page number and how many to view per page.

From our queries database, we first create a new function for us to select only up to the total
number of items in our database:

class UserProfile{
 // Etc ...
function count_rows($table) {
 $dbconn = new mysqli('localhost', 'root', 'somepass',
'databasename');
 $query = $dbconn->query("select COUNT(*) as num from '". $table . "'");

 $total_pages = mysqli_fetch_array($query);

 return $total_pages['num']; //fetching by array, so element 'num' =

Create a User Profile System and use the Null Coalesce Operator

[15]

count
}

For our pagination, we can create a simple paginate function which accepts the base_url
of the page where we have pagination, the rows per page – also known as the number of
records we want each page to have – and the total number of records found:

require('definitions.php');
require('db.php'); //our database class

Function paginate ($base_url, $rows_per_page, $total_rows) {
 $pagination_links = array(); //instantiate an array to hold our html page
links

 //we can use null coalesce to check if the inputs are null
 ($total_rows || $rows_per_page) ?? exit('Error: no rows per page and
total rows);
 //we exit with an error message if this function is called incorrectly
 $pages = $total_rows % $rows_per_page;
 $i= 0;
 $pagination_links[$i] = "<a href="http://". $base_url .
"?pagenum=". $pagenum."&rpp=".$rows_per_page. ">" . $pagenum . "";
 }
 return $pagination_links;

}

This function will help display the above page links in a table:

function display_pagination($links) {
 $display = '<div class="pagination">
 <table><tr>';
 foreach ($links as $link) {
 echo "<td>" . $link . "</td>";
 }

 $display .= '</tr></table></div>';

 return $display;
 }

Notice that we're following the principle that there should rarely be any echo statements
inside a function. This is because we want to make sure that other users of these functions
are not confused when they debug some mysterious output on their page.

Create a User Profile System and use the Null Coalesce Operator

[16]

By requiring the programmer to echo out whatever the functions return, it becomes easier
to debug our program. Also, we're following the Separation of Concerns, our code doesn't
output the display, it just formats the display.

So any future programmer can just update the function's internal code and return
something else. It also makes our function reusable; imagine that in the future someone
uses our function, this way, they won't have to double check that there's some misplaced
echo statement within our functions.

A note on alternative short tags
As you know, another way to echo is to use the <?= tag. You can use it
like so: <?="helloworld"?>.These are known as short tags. In PHP 7,
alternative PHP tags have been removed. The RFC states that <%, <%=, %>
and <script language=php> have been deprecated. The RFC at h t t p s :

/ / w i k i . p h p . n e t / r f c / r e m o v e _ a l t e r n a t i v e _ p h p _ t a g s says that the RFC
does not remove short opening tags (<?) or short opening tags with echo
(<?=).

Since we have laid out the groundwork of creating paginate links, we now just have to
invoke our functions. The following script is all that is needed to create a paginated page
using the preceding function:

$mysqli = mysqli_connect('localhost','<username>','<password>',
'<dbname>');

 $limit = $_GET['rpp'] ?? 10; //how many items to show per page
default 10;

 $pagenum = $_GET['pagenum']; //what page we are on

 if($pagenum)
 $start = ($pagenum - 1) * $limit; //first item to display on this page
 else
 $start = 0; //if no page var is given, set start
to 0
/*Display records here*/
$sql = "SELECT * FROM userprofiles LIMIT $start, $limit ";
$rs_result = mysqli_query ($sql); //run the query

while($row = mysqli_fetch_assoc($rs_result) {
?>
 <tr>
 <td><?php echo $row['name']; ?></td>
 <td><?php echo $row['age']; ?></td>
 <td><?php echo $row['country']; ?></td>

Create a User Profile System and use the Null Coalesce Operator

[17]

 </tr>

<?php
}

/* Let's show our page */
/* get number of records through */
 $record_count = $db->count_rows('userprofiles');

$pagination_links = paginate('listprofiles.php' , $limit, $rec_count);
 echo display_pagination($paginaiton_links);

The HTML output of our page links in listprofiles.php will look something like this:

<div class="pagination"><table>
 <tr>
 <td> 1 </td>
 <td>2 </td>
 <td>2 </td>
 </tr>
</table></div>

Summary
As you can see, we have a lot of use cases for the null coalesce.

We learned how to make a simple user profile system, and how to use PHP 7's null coalesce
feature when fetching data from the database, which returns null if there are no records. We
also learned that the null coalesce operator is similar to a ternary operator, except this
returns null by default if there is no data.

In the next chapter, we'll have more use cases for other PHP 7 features, especially when
creating the database abstraction layer for use in our projects.

2
Build a Database Class and

Simple Shopping Cart
For our previous app, which was just user profiles, we only created a simple Create-Read-
Update-Delete (CRUD) database abstraction layer – basic stuff. In this chapter, we will
create a better database abstraction layer that will allow us to do more than just basic
database functions.

Aside from the simple CRUD features, we will add result manipulation into the mix. We'll
build the following features into our database abstraction class:

Conversion of integers to other, more accurate numeric types
Array to object conversion
firstOf() method: Allows us to select the first of the results of a database query
lastOf() method: Allows us to select the last of the results of a database query
iterate() method: Will allow us to iterate over the results and return it in a
format we will send to this function
searchString() method: looks for a string in a list of results

We may add more functions as and when we might need them. Towards the end of the
chapter, we will apply the database abstraction layer to build a simple Shopping Cart
system.

The Shopping Cart is simple: a user who is already logged in should be able to click on
some items for sale, click on add to shopping cart, and get the user's details. After the user
has verified their items, they then click the button to purchase and we'll transfer their
Shopping Cart items into a purchase order where they will fill in the delivery address, and
then save this into the database.

Build a Database Class and Simple Shopping Cart

[19]

Building the database abstraction class
In PHP, when creating a class, there is a way to call a certain method every time that class is
initialized. This is called the constructor of the class. Most classes have a constructor, and so
we shall have our own. The constructor function is named with two underscores with the
construct() keyword, like this: function __construct(). Functions with two
underscores are also known as magic methods.

In our database abstraction class we need to create a constructor to be able to return the
link object generated by mysqli:

 Class DB {
 public $db;
 //constructor
 function __construct($server, $dbname,$user,$pass) {
 //returns mysqli $link $link = mysqli_connect('');
 return $this->db = mysqli_connect($server, $dbname, $user, $pass);
 }
}

Raw query method
The query method will just execute the query of anything passed to it. We will just call
MySQLi's db->query method in the query method.

Here is what it looks like:

public function query($sql) {
 $results = $this->db->query($sql);
 return $results;
}

Create method
For our database layer, let's create thecreate method. With this, we will insert items into a
database using SQL syntax. In MySQL, the syntax is as follows:

INSERT INTO [TABLE] VALUES ([val1], [val2], [val3]);

Build a Database Class and Simple Shopping Cart

[20]

We need a way to convert array values into a string with each value separated by commas:

 function create ($table, $arrayValues) {
 $query = "INSERT INTO `" . $table . " ($arrayVal); //TODO: setup
arrayVal
 $results = $this->db->query($link, $query);
}

Read method
For our db layer, let's create the read method. With this, we will just query our database
using SQL syntax.

The syntax in MySQL is as follows:

SELECT * FROM [table] WHERE [key] = [value]

We'll need to create a function which is able to accept the preceding parameters in brackets:

public function read($table, $key, $value){
 $query = SELECT * FROM $table WHERE `". $key . "` = " . $value;
 return $this->db->query($query);
}

Select all method
Our read method accepts a key and value pair. However, there may be cases where we
just need to select everything in a table. In this case, we should create a simple method to
select all the rows in a table, which only accepts the table to select as the parameter.

In MySQL, you just select all the rows using the following command:

SELECT * FROM [table];

We'll need to create a function which is able to accept the preceding parameters in brackets:

public function select_all($table){
 $query = "SELECT * FROM " . $table;
 return $this ->query($query);
}

Build a Database Class and Simple Shopping Cart

Build a Database Class and Simple Shopping Cart

[25]

}

In the preceding code, we used our freshly created iterate_over function, which formats
each value of the database. The end result is we have a table of the items we want to buy.

Let's create a simple layout structure which simply gets the header and footer in each page
we build, and from now on, simply includes them:

In header.php:

<html>
<!doctype html>
<head>
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css
">
</head>
<body>

In footer.php:

<div class="footer">Copyright 2016</div></body>
</html>

In index.php:

<?php
require('header.php');
//render item_list code goes here
require('itemslist.php'); //to be coded
require('footer.php');
?>

Now let's create the itemslist.php page which will be included in the index.php:

<?php
include('DB.php');
$db = new DB();
$table = 'shopping_items';
$results = $db->select_all($table);
//calling the render function created earlier:
foreach(as $item) {
 echo render_shopping_items($results);
}

?>
//shopping items list goes here.

Build a Database Class and Simple Shopping Cart

[26]

Our functions are ready but our database does not exist yet. We also need to populate our
database.

Let's create some shopping items by creating the shopping_items table in our MySQL
database:

CREATE TABLE shopping_items (
 id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(255) NOT NULL,
 price DECIMAL(6,2) NOT NULL,
 image VARCHAR(255) NOT NULL,
PRIMARY KEY (id)
);

Let's run MySQL and insert the following items into our database:

INSERT INTO `shopping_items` VALUES (NULL,'Tablet', '199.99',
'tablet.png');
INSERT INTO `shopping_items` VALUES (NULL, 'Cellphone', '199.99',
'cellphone.png');
INSERT INTO `shopping_items` (NULL,'Laptop', '599.99', 'Laptop.png');
INSERT INTO `shopping_items` (NULL,'Cable', '14.99', 'Cable.png');
INSERT INTO `shopping_items` (NULL, 'Watch', '100.99', 'Watch.png');

Let's save it in a file insert_shopping_items.sql. Then, in the same directory as the
insert_shopping_items.sql file:

Log on to MySQL client and follow the procedure:1.

 mysql -u root -p

Then type use <name of database>:2.

 mysql> use <database>;

Import the script by using the source command:3.

 mysql> source insert_shopping_items.sql

Build a Database Class and Simple Shopping Cart

[27]

When we run SELECT * FROM shopping_items, we should see the following:

Adding checkboxes to the Shopping List page
Now let's create the HTML checkboxes for a user to be able to select a shopping item. We'll
create the form to insert the data as follows:

//items.php

<html>
<body>

<form action="post_profile.php" method="POST">
<table>
 <input type="checkbox" value="<item_id>"> <td><item_image></td>
 <td><item_name></td><td>
 </table>
</form>
</body>
</html>

To do this, we'll need to modify our render_items method to add a checkbox:

public function render_items($itemsArray) {

foreach($itemsArray as $item) {
 return '<tr>
 <td><input type="checkbox" name="item[]" value="' . $item->id.
'">' . . '</td><td>' . $item->image .'</td>
<td>'. $item->name . '</td>
'<td>'.$item->price . '</td>
'</tr>';
}
}

Build a Database Class and Simple Shopping Cart

[28]

On the next page, when the user clicks on submit, we'll have to get all the IDs in an array.

Since we named our checkbox item[], we should be able to get the values via
$_POST['item'] as an array. Basically, all the items that were checked will go into PHP's
$_POST variable as an array, which will allow us to get all the values for saving our data
into our database. Let's loop through the results' IDs and get the price for each in our
database and save each item in an array called itemsArray, with the key as the name of the
item and its price as the value of the item:

$db = new DB();
$itemsArray= []; //to contain our items - since PHP 5.4, an array can be
defined with [];
foreach($_POST['item'] as $itemId) {

 $item = $db->read('shopping_items', 'id', $itemId);
 //this produces the equivalent SQL code: SELECT * FROM shopping_items
WHERE id = '$itemId';
 $itemsArray[$item->name] = $item-price;

}

We are going to first confirm with the user about the items that were purchased. We will
just save the items and the total amount into a cookie for now. We will access the values of
the cookie on our checkout page, which will accept the user's details and save them to our
database on submission of the checkout page.

PHP session versus cookies: For data which is not very sensitive, such as
the list of items a user has purchased, we can use cookies, which actually
store the data (in plain text!) in the browser. If you are building this
application and using it in production, it is recommended to use sessions.
To learn more about sessions, go to h t t p : / / p h p . n e t / m a n u a l / e n / f e a t u r e

s . s e s s i o n s . p h p.

Cookies in PHP
In PHP, to start a cookie, you just call the setcookie function. To save our items purchased
into a cookie, we must serialize the array, the reason being, the cookies only store values as
strings.

Here, we save the items into the cookie:

setcookie('purchased_items', serialize($itemsArray), time() + 900);

http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php
http://php.net/manual/en/features.sessions.php

Build a Database Class and Simple Shopping Cart

[29]

The preceding cookie will store the items as an array in the purchased_items cookie. It
will expire in 15 minutes (900 seconds). However, notice the call to the time() function,
which returns the Unix timestamp of the current time. Cookies in PHP will expire when the
time set in the last parameter has been reached.

Debugging your cookie-based application is sometimes frustrating. Make
sure that the timestamp generated by time() is really showing the current
time.
For example, it could happen that you have recently reformatted your
computer and for some reason was not able to set the time correctly. To
test the time(), simply run a PHP script with the time() call and check h
t t p : / / w w w . u n i x t i m e s t a m p . c o m / if they are almost the same.

Building the Checkout page
Finally, we'll create a form where the user can input their details after checking out.

We first need to build the database table for the customer. Let's call this table purchases.
We'll need to store the customer's name, address, e-mail, credit card, items purchased, and
the total. We should also store the time of the purchase transaction and use a unique
primary key to index each row.

The following is our table's schema to be imported into our MySQL database:

CREATE TABLE purchases (
 id INT(11) NOT NULL AUTO_INCREMENT,
 customer_name VARCHAR(255) NOT NULL,
 address DECIMAL(6,2) NOT NULL,
 email DECIMAL(6,2) NOT NULL,
 credit_card VARCHAR(255) NOT NULL,
 items TEXT NOT NULL,
 total DECIMAL(6,2) NOT NULL,
 created DATETIME NOT NULL,
 PRIMARY KEY (id)
);

One way to import this is by creating a file purchases.sql, then logging in to your
MySQL command-line tool.

Then, you can select the database you want to use with:

USE <databasename>

http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/
http://www.unixtimestamp.com/

Build a Database Class and Simple Shopping Cart

[30]

Finally, assuming you are on the same directory as purchases.sql, you can run:

SOURCE purchases.sql

Let's finish off by creating a simple form with input fields for details such as the address,
credit card, and name of the buyer:

<form action="save_checkout.php" method="post">
<table>
 <tr>
 <td>Name</td><td><input type="text" name="fullname"></td>
 </tr>
 <tr>
<td>Address</td><td><input type="text" name="address"></td>
</tr>
<tr>
<td>Email</td><td><input type="text" name="email"></td>
</tr>

<tr>
 <td>Credit Card</td><td><input type="text" name="credit_card"></td>
 </tr>
<tr>
 <td colspan="2"><input type="submit" name="submit" value="Purchase"></td>
 </tr>

</table>
</form>

Here is how it looks:

Build a Database Class and Simple Shopping Cart

[31]

Finally, we'll save everything into another table in our database by using our DB class as
usual. To calculate the total amount, we will query the database for the prices and use the
array_sum of PHP to get the total:

$db = new DB($server,$dbname,$name,$password);

//let's get the other details of the customer
$customer_name = $_POST['fullname'];
$address = $_POST['address'];
$email = $_POST['email'];
$credit_card = $_POST['credit_card];
$time_now = date('Y-m-d H:i:s');

foreach($purchased_items as $item) {
 $prices[] = $item->price;
}

//get total using array_sum
$total = array_sum($prices);

$db->insert('purchases', [
 'address' => $address,
'email' => $email,
'credit_card' => $credit_card,
 'items' => //<all the items and prices>//,
 'total' => $total,
 'purchase_date' => $timenow
]);
?>

To keep things simple, as you can see in the highlighted code, we need to collect all the
items that were bought into one long string, for saving in our database. Here's how you can
concatenate each item and their prices:

foreach($purchased_items as $item) {
 $items_text .= $item->name ":" . $item->price . ","
}

Then we can save this data into the variable $items_text. We will update the preceding
highlighted code and change the text <all the items and prices> into it
with $items_text:

...
 'items' => $items_text
 ...

Build a Database Class and Simple Shopping Cart

[32]

The preceding foreach loop should be placed before the call to the $db->insert method
in our code.

Thank you page
Finally, we've saved the data into our purchased_items table. It's time to say thank you
to our customer and send an e-mail. In our HTML code of thankyou.php, we will just
write a thank you note and let the user know that an e-mail is on its way regarding their
purchases.

Here's a screenshot:

We'll name the file thankyou.php, and its HTML code is pretty simple:

<!DOCTYPE html>
<html>
<head>
 <!-- Latest compiled and minified CSS -->
 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css
"
integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjW
PGmkzs7" crossorigin="anonymous">
 <title>Thank you for shopping at example.info</title>
</head>
<body>
 <div class="container">
 <div class="row">
 <div class="col-lg-12 text-center">
 <h1>Thank you for shopping at example.info</h1>
 <p>Yey! We're really happy for choosing us to shop
online. We've sent you an email of your purchases. </p>

Build a Database Class and Simple Shopping Cart

[33]

 <p>Let us know right away if you need anything</p>
 </div>
 </div>
 </div>
</body>
</html>

Sending an e-mail using PHP is done using the mail() function:

mail("<to address>", "Your purchase at example.com","Thank you for
purchasing...", "From: <from address>");

The third parameter is the message of our e-mail. In the code, we still need to add the
details of the purchase. We shall loop through the cookie we made earlier and the prices,
then just output the total amount, and send the message:

$mail_message = 'Thank you for purchasing the following items';
$prices = [];
$purchased_items = unserialize($_COOKIE['purchased_items']);
foreach($purchased_items as $itemName => $itemPrice) {
 $mail_message .= $itemName . ": " .$itemPrice . "\r\n \r\n";
 //since this is a plain text email, we will use \r\n - which are escape
strings for us to add a new line after each price.
 $prices[] = $itemPrice;
}

$mail_message .= "The billing total of your purchases is " .
array_sum($prices);

mail($_POST['email'], "Thank you for shopping at example.info here is your
bill", $mail_message, "From: billing@example.info");

We can add the preceding bit of code at the very end of our thankyou.php file.

Installing TCPDF
You can download the TCPDF library from sourceforge, h t t p s : / / s o u r c e f o r g e . n e t / p r o j e
c t s / t c p d f /

TCPDF is a PHP class for writing PDF documents.

A sample code with a PHP example of TCPDF's, looks as follows:

//Taken from http://www.tcpdf.org/examples/example_001.phps

// Include the main TCPDF library (search for installation path).

https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/
https://sourceforge.net/projects/tcpdf/

Build a Database Class and Simple Shopping Cart

[34]

require_once('tcpdf_include.php');

// create new PDF document
$pdf = new TCPDF(PDF_PAGE_ORIENTATION, PDF_UNIT, PDF_PAGE_FORMAT, true,
'UTF-8', false);

// set document information
$pdf->SetCreator(PDF_CREATOR);
$pdf->SetAuthor('Nicola Asuni');
$pdf->SetTitle('TCPDF Example 001');
$pdf->SetSubject('TCPDF Tutorial');
$pdf->SetKeywords('TCPDF, PDF, example, test, guide');

// set default header data
$pdf->SetHeaderData(PDF_HEADER_LOGO, PDF_HEADER_LOGO_WIDTH,
PDF_HEADER_TITLE.' 001', PDF_HEADER_STRING, array(0,64,255),
array(0,64,128));
$pdf->setFooterData(array(0,64,0), array(0,64,128));

// set header and footer fonts
$pdf->setHeaderFont(Array(PDF_FONT_NAME_MAIN, '', PDF_FONT_SIZE_MAIN));
$pdf->setFooterFont(Array(PDF_FONT_NAME_DATA, '', PDF_FONT_SIZE_DATA));

// set default monospaced font
$pdf->SetDefaultMonospacedFont(PDF_FONT_MONOSPACED);

// set margins
$pdf->SetMargins(PDF_MARGIN_LEFT, PDF_MARGIN_TOP, PDF_MARGIN_RIGHT);
$pdf->SetHeaderMargin(PDF_MARGIN_HEADER);
$pdf->SetFooterMargin(PDF_MARGIN_FOOTER);

// set auto page breaks
$pdf->SetAutoPageBreak(TRUE, PDF_MARGIN_BOTTOM);

// set image scale factor
$pdf->setImageScale(PDF_IMAGE_SCALE_RATIO);

// set some language-dependent strings (optional)
if (@file_exists(dirname(__FILE__).'/lang/eng.php')) {
 require_once(dirname(__FILE__).'/lang/eng.php');
 $pdf->setLanguageArray($l);
}

// ---

// set default font subsetting mode
$pdf->setFontSubsetting(true);

Build a Database Class and Simple Shopping Cart

[35]

// Set font
// dejavusans is a UTF-8 Unicode font, if you only need to
// print standard ASCII chars, you can use core fonts like
// helvetica or times to reduce file size.
$pdf->SetFont('dejavusans', '', 14, '', true);

// Add a page
// This method has several options, check the source code documentation for
more information.
$pdf->AddPage();

// set text shadow effect
$pdf->setTextShadow(array('enabled'=>true, 'depth_w'=>0.2, 'depth_h'=>0.2,
'color'=>array(196,196,196), 'opacity'=>1, 'blend_mode'=>'Normal'));

// Set some content to print
$html = <<<EOD
<h1>Welcome to <a href="http://www.tcpdf.org" style="text-
decoration:none;background-color:#CC0000;color:black;"> TCPDF !</h1>
<i>This is the first example of TCPDF library.</i>
<p>This text is printed using the <i>writeHTMLCell()</i> method but you can
also use: <i>Multicell(), writeHTML(), Write(), Cell() and Text()</i>.</p>
<p>Please check the source code documentation and other examples for
further information.</p>
<p style="color:#CC0000;">TO IMPROVE AND EXPAND TCPDF I NEED YOUR SUPPORT,
PLEASE MAKE A
DONATION!</p>
EOD;

// Print text using writeHTMLCell()
$pdf->writeHTMLCell(0, 0, '', '', $html, 0, 1, 0, true, '', true);

// ---

// Close and output PDF document
// This method has several options, check the source code documentation for
more information.
$pdf->Output('example_001.pdf', 'I');

With this example, we can now use the preceding code and modify it a bit in order same in
order to create our own invoice. All we need is the same HTML styling and the values
generated by our total. Let's use the same code and update the values to the ones we need.

Build a Database Class and Simple Shopping Cart

[36]

In this case, we will set the Author to be the site's name, example.info. And set our
subject to Invoice.

First, we need to acquire the main TCPDF library. If you installed it on a different folder, we
may need to provide a relative path which points to the tcpdf_include.php file:

require_once('tcpdf_include.php');

This instantiates a new TCPDF object with the default orientations and default page formats
from the class:

$pdf = new TCPDF(PDF_PAGE_ORIENTATION, PDF_UNIT, PDF_PAGE_FORMAT, true,
'UTF-8', false);

$pdf = new TCPDF(PDF_PAGE_ORIENTATION, PDF_UNIT, PDF_PAGE_FORMAT, true,
'UTF-8', false);

// set document information
$pdf->SetCreator(PDF_CREATOR);
$pdf->SetAuthor('Example.Info');
$pdf->SetTitle('Invoice Purchases');
$pdf->SetSubject('Invoice');
$pdf->SetKeywords('Purchases, Invoice, Shopping');
s

$html = <<<EOD
<h1>Example.info Invoice </h1>
<i>Invoice #0001.</i>
EOD;

Now, let's use HTML to create an HTML table of the purchases of a customer:

$html .= <<<EOD
<table>
 <tr>
 <td>Item Purchases</td>
 <td>Price</td>
 </tr>
EOD;

This style of writing out multi-line strings is known as the heredoc syntax.

Build a Database Class and Simple Shopping Cart

[37]

Let's create a connection to the database by instantiating our DB class:

$db = new DBClass('localhost','root','password', 'databasename');
We shall now query our database with our database class:

$table = 'purchases';
$column = 'id';
$findVal = $_GET['purchase_id'];

 $result = $db->read ($table, $column, $findVal);

foreach($item = $result->fetch_assoc()) {
$html .= "<tr>
 <td>". $item['customer_name']. "</td>
 <td>" . $item['items'] . "
</tr>";

$total = $items['total']; //let's save the total in a variable for printing
in a new row

}

$html .= '<tr><td colspan="2" align="right">TOTAL: ' ".$total. " '
</td></tr>';

$html .= <<<EOD
</table>
EOD;

$pdf->writeHTML($html, true, false, true, false, '');

$pdf->Output('customer_invoice.pdf', 'I');

In creating PDFs, it's important to note that most HTML to PDF converters are created
simple and can interpret simple-inline CSS layouts. We used tables to print out each item,
which is okay for table data. It provides a structure to the layout and makes sure that things
are properly aligned.

Build a Database Class and Simple Shopping Cart

[38]

Admin for managing purchases
We'll be building the admin system for handling all our purchases. This is in order to keep
track of each customer that bought something from our site. It will consist of two pages:

An overview of all customers who purchased something
Being able to view the items purchased by a customer

We will also be adding some features to these pages in order to make it easier for an admin
to make changes to a customer's information.

We'll also create a simple htaccess apache rule in order to block other people from
accessing our admin site, because it contains highly sensitive data.

Let's first start selecting all the data inside our purchases table:

<?php
//create an html variable for printing the html of our page:
$html = '<!DOCTYPE html><html><body>';

$table = 'purchases';
$results = $db->select_all($table);

//start a new table structure and set the headings of our table:
$html .= '<table><tr>
 <th>Customer name</th>
 <th>Email</th>
 <th>Address</th>
 <th>Total Purchase</th>
</tr>';

//loop through the results of our query:
while($row = $results->fetch_assoc()){
 $html .= '<tr><td>'$row['customer_name'] . '</td>';
 $html .= '<td>'$row['email'] . '</td>';
 $html .= '<td>'$row['address'] . '</td>';
 $html .= '<td>'$row['purchase_date'] . '</td>';
 $html .= '</tr>';
}

$html .= '</table>';
$html .= '</body></html>;

//print out the html
echo $html;

Build a Database Class and Simple Shopping Cart

[39]

We shall now add a link to another view of our customer data. This view will enable the
admin to see all their purchases. We can link the first page to the detailed view of the
customer's purchase by adding a link on the customer's name, by changing the line where
we've added the customer's name to the $html variable to this:

 $html .= '<tr><td><a href="view_purchases.php?pid='.$row['id']
.'">'$row['customer_name'] . '</td>';

Notice that we've made the $row['id'] be part of the URL. We can now access the ID
number of the data we will be getting through the $_GET['pid'] value.

Let's create the code for viewing a customer's purchased items in a new file –
view_purchases.php:

<?php
//create an html variable for printing the html of our page:
$html = '<!DOCTYPE html><html><body>';

$table = 'purchases;
$column = 'id';
$purchase_id = $_GET['pid'];
$results = $db->read($table, $column, $purchase_id);
//outputs:
// SELECT * FROM purchases WHERE id = '$purchase_id';

//start a new table structure and set the headings of our table:
$html .= '<table><tr><th>Customer name</thth>Total Purchased</th></tr>';
//loop through the results of our query:
while($row = $results->fetch_assoc()){
 $html .= '<tr><td>'$row['customer_name'] . '</td>';
 $html .= '<tr><td>'$row['email'] . '</td>';
 $html .= '<tr><td>'$row['address'] . '</td>';
 $html .= '<tr><td>'$row['purchase_date'] . '</td>';
 $html .= '</tr>';
}
$html .= '</table>';
echo $html;

In the preceding code, we've used the $_GET['id'] variable for us to look up the table for
the exact purchases of the customer. While we could have just used the customer name to
look up the customer's purchases from the table purchases, that would assume that the
customer only purchased once through our system. Also, we didn't use the customer name
to determine if we sometimes have customers that have the same name.

Build a Database Class and Simple Shopping Cart

[40]

By using the primary ID of the table purchases, in our case, selecting by the id field
ensures that we are selecting that particular unique purchase. Note that because our
database is simple, we are able to just query one table in our database – the purchases
table – in our case.

Perhaps a better implementation might be to separate the purchases table into two tables –
one containing the customer's details, and another containing the purchased items details.
This way, if the same customer returns, their details can be automatically filled in next time,
and we just need to link the new items purchased to their account.

The purchases table, in this case, would simply be called purchased_items table, and
each item would be linked to a customer ID. The customer details would be stored in a
customers table, containing their unique address, e-mail and credit card details.

You would then be able to show a customer their purchase history. Each time the customer
buys from the store, the transaction date would be recorded and you would have to sort the
history by date and time of each entry.

Summary
Great, we're done!

We just learned how to build a simple database abstraction layer, and how to use it for a
Shopping Cart. We also learned about cookies and building an invoice using the TCPDF
library.

In the next chapter, we'll build a completely different thing and use sessions to save the
current user information of a user in building a PHP-based chat system.

3
Building a Social Newsletter

Service
According to a reliable dictionary, a newsletter is a bulletin issued periodically to the
members of a society, business, or organization.

In this chapter, we will be building an e-mail newsletter, that allows members to subscribe
and unsubscribe, receive updates on certain categories, and also allows a marketer to check
how many people visited a certain link.

We'll be building an authentication system for our users to log in and log out of the
newsletter management system, which is a social login system for subscribed members to
easily check their subscriptions, and simple dashboards for subscribers and administrators.

Authentication system
In this chapter, we will implement a new authentication system in order to allow
administrators of the newsletter to be authenticated. Since PHP5, PHP has improved and
added a feature that object-oriented developers have used to separate namespaces.

Let's start by defining a namespace named Newsletter as follows:

<?php
namespace Newsletter;
//this must always be in every class that will use namespaces
class Authentication {
}
?>

Building a Social Newsletter Service

[42]

In the preceding example, our Newsletter namespace will have
an Authentication class. When other classes or PHP scripts need to use Newsletter's
Authentication class, they can simple declare it using the following code:

Use Newsletter\Authentication;

Inside our Newsletter class, let's create a simple check for the user using bcrypt, which is
a popular and secure way of creating and storing hashed passwords.

Since PHP 5.5, bcrypt is built into the password_hash() PHP function.
PHP's password_hash() function allows a password to become a hash.
In reverse, when you need to verify that hash matches the original
password, you can use the password_verify() function.

Our class will be fairly simple-it will have one function used to verify if an e-mail address,
and the hashed password that was entered is the same as the one in the database. We have
to create a simple class that has only one method, verify(), which accepts the e-mail and
the password of the user. We will use bcrypt to verify that the hashed password is the
same as the one in our database:

Class Authorization {
 public function verify($email, $password) {
 //check for the $email and password encrypted with bcrypt
 $bcrypt_options = [
 'cost' => 12,
 'salt' => 'secret'
];
 $password_hash = password_hash($password, PASSWORD_BCRYPT,
$bcrypt_options);
 $q= "SELECT * FROM users WHERE email = '". $email. "' AND password
= '".$password_hash. "'";
 if($result = $this->db->query($q)) {
 while ($obj = results->fetch_object()) {
 $user_id = $obj->id;
}
 } else {
 $user_id = null;
}
 $result->close();
 $this->db->close();
 return $user_id;
 }
}

Building a Social Newsletter Service

[43]

We, however, need to get the DB class to be able to do a simple query with our database. For
this simple one-off project, we can simply use the concept of dependency injection in our
Authentication class.

We should create a fairly trivial IOC container class, which allows us to instantiate the
database along with it.

Let's call it DbContainer, which allows us to connect a class, such as Authentication, to
the DB class:

Namespace Newsletter;
use DB;
Class DbContainer {
 Public function getDBConnection($dbConnDetails) {
 //connect to database here:
 $DB = new \DB($server, $username, $password, $dbname);
 return $DB;
 }
}

However, if you use this function right away, an error will state that the file could not find
and will load the DB class.

Previously, we used the use system of requiring classes. In order for this to work, we need
to create an autoloader function to load our DB class without having to use require
statements.

In PHP, there is the spl_autoload_register function we can create, which will take care
of requiring the files needed automatically.

Following is the example implementation based on the example that can be found in the
PHP manual:

<?php
/**
 * After registering this autoload function with SPL, the following line
 * would cause the function to attempt to load the \Newsletter\Qux class
 * from /path/to/project/src/Newsletter/Qux.php:
 *
 * new \Newsletter\Qux;
 *
 * @param string $class The fully-qualified class name.
 * @return void
 */
spl_autoload_register(function ($class) {
 // project-specific namespace prefix

Building a Social Newsletter Service

[44]

 $prefix = 'Newsletter';
 // base directory for the namespace prefix
 $base_dir = __DIR__ . '/src/';
 // does the class use the namespace prefix?
 $len = strlen($prefix);
 if (strncmp($prefix, $class, $len) !== 0) {
 // no, move to the next registered autoloader
 return;
 }
 // get the relative class name
 $relative_class = substr($class, $len);
 // replace the namespace prefix with the base directory,
//replace namespace
 // separators with directory separators in the relative class
//name, append
 // with .php
 $file = $base_dir . str_replace('', '/', $relative_class) . '.php';
 // if the file exists, require it
 if (file_exists($file)) {
 require $file;
 }
});

With the preceding code, we would now need to create a src directory and use this
separator \\ convention in separating the folder structure within your application.

Using this example means we'll need to put the database class file DB.class.php inside the
src folder and rename the filename to just DB.php.

This was done so that when you specify that you want to use DB class in another PHP script,
PHP will simply perform a require src/DB.php behind the scenes automatically.

Continuing with our example DbContainer, we'll need to somehow pass all our
configuration information (that is, name of the database, username, and password to the
MySQL database) inside the DbContainer.

Let's simply create a file dbconfig.php that has the database details and returns it as an
object, and require it:

//sample dbconfig.php
return array('server' => 'localhost',
 'username' => 'root',
 'password => '',
 'dbname' => 'newsletterdb'
);

Building a Social Newsletter Service

[45]

In our DbContainer class, let's create a loadConfig() function that reads from the
dbconfig.php file and instantiates a database connection:

Class DbContainer {
public function loadConfig ($filePath) {
 if($filePath) {
 $config = require($filePath);
 return $config; //contains the array
 }

}

Now we need to create a connect() method, which will enable us to simply connect to a
MySQL database and only return the connection:

Class DB {
 //...
public function connect($server, $username, $password, $dbname) {
 $this->connection = new MySQLI($server, $username, $password, $dbname);
 return $this->connection;
}
}

We made our function flexible by not hard-coding the filename into our function. When
calling loadConfig(), we need to put the path to the config file to load.

We also use the $this keyword so that any time we need to refer to other functions within
the DB class, we just have to call $DB->nameOfMethod(someParams) after the autoloader
loads and instantiates the DB class automatically when you call $DB = new \DB().

With this, we now have the flexibility to easily change the config file's path in case we
move the config file to other paths, for example, to a folder that is not directly accessible
through the Web.

Then, we can easily use this function and generate a database instance in a separate class,
for example, in our Newsletter class, we can now make a reference to an instance of the DB
class connection and instantiate it within the Newsletter class.

Building a Social Newsletter Service

[46]

Now that we're done with this, we should simply create a Bootstrap file that loads the
spl_autoload_register function and the connection to the database using the
dbContainer all together. Let's name the file bootstrap.php, and it should contain the
following:

require('spl_autoloader_function.php');

$dbContainer = new \DBContainer; //loads our DB from src folder, using the
spl_autoload_functionabove.

$dbConfig = $db->getConfig('dbconfig.php');

$dbContainer = getDB($dbConfig); //now contains the array of database
configuration details

The next step is to connect to the database with the following code:

$DB = new \DB;
$DBConn =
$DB->connect($dbContainer['server'],$dbContainer['username'],$dbContainer['
password'],$dbContainer['dbname']);

After we've all connected to the database, we need to rewrite our authorization query to use
the new initialized classes.

Let's create a simple select_where method in our DB class and then call it from
the Authorization class:

public function select_where($table, $where_clause) {
 return $this->db->query("SELECT * FROM ". $table." WHERE " .
$where_clause);
}

The Authorization class now looks as follows:

Class Authorization {
 //this is used to get the database class into Authorization
 Public function instantiateDB($dbInstance){
 $this->db = $dbInstance;
 }

 public function verify($email, $password) {
 //check for the $email and password encrypted with bcrypt
 $bcrypt_options = [
 'cost' => 12,
 'salt' => 'secret'
];

Building a Social Newsletter Service

[47]

 $password_hash = password_hash($password, PASSWORD_BCRYPT,
$bcrypt_options);
 //select with condition
 $this->db->select_where('users', "email = '$email' AND password =
'$password_hash'");
 if($result = $this->db->query($q)) {
 while ($obj = results->fetch_object()) {
 $user_id = $obj->id;
}
 } else {
 $user_id = null;
}
 $result->close();
 $this->db->close();
 return $user_id;
 }
}

Creating a social login for members
For us to have more people subscribing easily, we will implement a way for Facebook users
to simply log in and subscribe to our newsletter without having to type their e-mail
address.

Login via Facebook works through Oauth. The first step is to generate app authentication
tokens by going to h t t p s : / / d e v e l o p e r s . f a c e b o o k . c o m /.

You should see your list of apps or click on the apps to create. You should see something
similar to the following screenshot:

https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/

Building a Social Newsletter Service

[48]

You should create an app first and be able to obtain your app ID and app secret by visiting
the app creation page, similar to the following screenshot:

When creating the new app, Facebook now includes a way for you to test that app ID.

This is what it looks like:

Building a Social Newsletter Service

[49]

This is for you to test that the app ID actually works. It is optional and you may skip that
step and just plug in the values for your app ID and app secret into the code shown in the
preceding screenshot.

Now let's create the fbconfig.php file, which will contain a way for us to use the
Facebook SDK library to enable the session.

The fbconfig.php script will contain the following:

<?php
session_start();
$domain = 'http://www.socialexample.info';
require_once 'autoload.php';

use FacebookFacebookSession;
use FacebookFacebookRedirectLoginHelper;
use FacebookFacebookRequest;
use FacebookFacebookResponse;
use FacebookFacebookSDKException;

Building a Social Newsletter Service

[50]

use FacebookFacebookRequestException;
use FacebookFacebookAuthorizationException;
use FacebookGraphObject;
use FacebookEntitiesAccessToken;
use FacebookHttpClientsFacebookCurlHttpClient;
use FacebookHttpClientsFacebookHttpable;

// init app with app id and secret (get from creating an app)
$fbAppId = '123456382121312313'; //change this.
$fbAppSecret = '8563798aasdasdasdweqwe84';
FacebookSession::setDefaultApplication($fbAppId, $fbAppSecret);
// login helper with redirect_uri
 $helper = new FacebookRedirectLoginHelper($domain . '/fbconfig.php');
try {
 $session = $helper->getSessionFromRedirect();
} catch(FacebookRequestException $ex) {
echo "Hello, sorry but we've encountered an exception and could not log you
in right now";
} catch(Exception $ex) {
 // Tell user something has happened
 echo "Hello, sorry but we could not log you in right now";
}
// see if we have a session
if (isset($session)) {
 // graph api request for user data
 $request = new FacebookRequest($session, 'GET', '/me');
 $response = $request->execute();
 // get response
//start a graph object with the user email
 $graphObject = $response->getGraphObject();
 $id = $graphObject->getProperty('id');
 $fullname = $graphObject->getProperty('name');
 $email = $graphObject->getProperty('email');

 $_SESSION['FB_id'] = $id;
 $_SESSION['FB_fullname'] = $fullname;
 $_SESSION['FB_email'] = $email;
//save user to session
 $_SESSION['UserName'] = $email; //just for demonstration purposes
//redirect user to index page
 header("Location: index.php");
} else {
 $loginUrl = $helper->getLoginUrl();
 header("Location: ".$loginUrl);
}
?>

Building a Social Newsletter Service

[51]

Here, we basically start a session with session_start() and set up the domain of our
website by saving it into a variable. We then autoload the FB SDK, which will require the
files and classes needed by Facebook to access its API for logging in.

We then set up several dependencies on other Facebook SDK classes by using the use
keyword. We set up the facebookSession class with our app ID and app secret and then
attempt to get a session started by calling the getSessionfromRedirect()method.

If there are any errors that get caught from trying to start the session, we simply let the user
know that we could not log him in, but if everything proceeds successfully, we start a graph
object with the e-mail of the user.

For our demonstration purposes, we save a username that is actually the e-mail address of
the user once we get the e-mail by using the Facebook graph.

We will authenticate everyone by checking their e-mail addresses anyway, and to make it
easier for a user to login, let's just store their e-mail as the username.

We'll need to finish up our site with index.php that shows the user what's inside our site.
We get there after the login from Facebook page redirects the user to the index.php page.

We'll keep it simple for now and display the full name from the Facebook profile of the user
who logged in. We'll add a logout link to give the user an option to logout:

<?php
session_start();
?>
<!doctype html>
<html xmlns:fb="http://www.facebook.com/2008/fbml">
 <head>
 <title>Login to SocialNewsletter.com</title>
<link href="
https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css"
rel="stylesheet">
 </head>
 <body>
 <?php if ($_SESSION['FB_id']): ?> <!-- After user login -->
<div class="container">
<div class="hero-unit">
 <h1>Hello <?php echo $_SESSION['UserName']; ?></h1>
 <p>How to login with PHP</p>
 </div>
<div class="span4">
 <ul class="nav nav-list">
<li class="nav-header">FB ID: <?php echo $_SESSION['FB_id']; ?>
 Welcome <?php echo $_SESSION['FB_fullName']; ?>

Building a Social Newsletter Service

[52]

<div>Logout</div>
</div></div>
 <?php else: ?> <!-- Before login -->
<div class="container">
<h1>Login with Facebook</h1>
 Not Connected with Facebook.
<div>
 Login with Facebook</div>
 </div>
 <?php endif ?>
 </body>
</html>

After logging in, we just have to display the dashboard for the user. We will discuss how to
create a basic dashboard for the user in the next section.

Member dashboard
Finally, when the member has logged in our app, they can now subscribe to newsletters
using the member subscription page. Let's first build out the databases that will be used to
store member details and their subscriptions. The member_details table will include the
following:

firstname and lastname: The real name of the user
email: To be able to e-mail the user
canNotify: Boolean (true or false), if they accept being e-mailed notifications
about other offers

Here's something that's interesting about the boolean type in MySQL.
When you create a field that uses boolean (true or false), MySQL actually
just aliases it to TINYINT(1). Boolean is basically 0 for false and 1 for true.
For more info, refer to h t t p : / / d e v . m y s q l . c o m / d o c / r e f m a n / 5 . 7 / e n / n u m e

r i c - t y p e - o v e r v i e w . h t m l.

The member_details table will handle this and it will be created using the following SQL
code:

CREATE TABLE member_details(
 id INT(11) PRIMARY KEY AUTO_INCREMENT,
 firstname VARCHAR(255),
 lastname VARCHAR(255),
 email VARCHAR(255),
 canNotify TINYINT(1),

http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html
http://dev.mysql.com/doc/refman/5.7/en/numeric-type-overview.html

Building a Social Newsletter Service

[53]

 member_id INT(11)
);

When logging in, our members will be stored in the users table. Let's create that with the
following SQL code:

CREATE TABLE users (
 id INT(11) PRIMARY KEY AUTO_INCREMENT
 username VARCHAR(255),
 password VARCHAR(255),
);

Now, build the view that shows our members all the different subscriptions we have. We
do this by checking the table subscriptions. The subscriptions table schema is defined
as follows:

`id` Int(11): This is the primary key for the subscriptions table and is set
with AUTO_INCREMENT
newsletter_id Int(11): This is the newsletter_id that they are subscribed
to
active BOOLEAN: This indicates whether the user is currently subscribed
(default 1)

Using SQL, it will look like the following:

CREATE TABLE subscriptions (
 `id` INT(11) PRIMARY KEY AUTO_INCREMENT,
 `newsletter_id` INT(11) NOT NULL,
 `member_id` INT(11) NOT NULL,
 `active` BOOLEAN DEFAULT true
);

We will also have to create the newsletters table, which will hold all the newsletters, their
template, and their content in JSON format. By using JSON as a storage format in our
database, it should now make it simple to fetch data from the database and parse JSON into
the proper values to insert into our template.

Since our newsletters will be stored in the database, we need to create the proper SQL
schema for it. This is how it will be designed:

Id INT(11): To index our newsletters in the database
newsletter_name (Text): The title of our newsletter
newsletter_count INT(11): To record the edition of our particular newsletter

Building a Social Newsletter Service

[54]

Status (String): To record the status of our newsletter, if it's been published,
unpublished, or pending publication
Slug (String): To be able to view the newsletter with the browser on our
social newsletter's website
Template (Text): To store the HTML template
Content (Text): To store the data that will go into our HTML template
Published_at (Date): To record the date of publication
Created_at (Date): To record the time that the newsletter was first created
Updated_at (Date): To record when the last time that someone updated the
newsletter

The SQL for this is as follows:

CREATE TABLE newsletters (
id INT(11) PRIMARY KEY AUTO_INCREMENT,
newsletter_name (TEXT),
newsletter_count INT(11) NOT NULL DEFAULT '0',
marketer_id INT(11) NOT NULL,
is_active TINYINT(1),
created_at DATETIME,

);

When user unsubscribes, this will help indicate that they were previously subscribed to this
newsletter. This is why we'll store an active field so that when they unsubscribe, instead
of deleting the record, we just set this to 0.

The marketer_id is going to be used in the future admin portion where we mention
the person who will be in charge of the management of the newsletter subscriptions.

Newsletters may also have many publications, which will be the actual newsletters that get
sent to each subscription. The following SQL code is to create publications:

CREATE TABLE publications (
 newsleterId INT(11) PRIMARY KEY AUTO_INCREMENT,
 status VARCHAR(25),
 content TEXT,
 template TEXT,
 sent_at DATETIME,
 created_at DATETIME,
);

Building a Social Newsletter Service

[55]

Now let's build the methods in our Newsletter class to select logged-in members
subscriptions for displaying into our dashboard:

Class Dashboard {
 public function getSubscriptions($member_id) {
 $query = $db->query("SELECT * FROM subscriptions, newsletters WHERE
subscriptions.member_id ='". $member_id."'");
 if($query->num_rows() > 0) {
 while ($row = $result->fetch_assoc()) {
 $data = array(
 'name' => $row->newsletter_name,
 'count' => $row->newsletter_count,
 'mem_id' => $row->member_id,
 'active' => $row->active
);
 }
 return $data;
 }
}
}

From the preceding code, we simply created a function that would get the subscriptions for
a given member ID. First, we create the "SELECT * FROM subscriptions,
newsletters WHERE subscriptions.member_id ='". $member_id." query. After
this, we loop through the query results using the fetch_assoc() method of the MySQLi
result object. Now that we've stored it in the $data variable, we return the variable, and in
the following code, we display the data in a table by invoking the following function:

 $member_id = $_SESSION['member_id'];
 $dashboard = new Dashboard;
 $member_subscriptions = $dashboard->getSubscriptions($member_id);
 ?>
 <table>
 <tr>
 <td>Member Id</td><td>Newsletter Name</td><td>Newsletter
count</td><td>Active</td>
 </tr>
<?php
 foreach($member_subscriptions as $subs) {
 echo '<tr>
 <td>'. $subs['mem_id'] . '</td>' .
 '<td>' . $subs['name'].'</td>' .
 '<td>' . $subs['count'] . '</td>'.
 '<td>' . $subs['active'] . '</td>
 </tr>';
 }
 echo '</table>';

Building a Social Newsletter Service

[56]

Marketers dashboard
Our marketers, who administer each newsletter that they own, will be able log in to our
system and be able to see how many members are subscribed and their e-mail addresses.

It is going to be an admin system that enables a marketer to update a member's record, view
recent subscriptions, and allow a marketer to send custom e-mails to any member of their
newsletter.

We'll have a table called marketers, which will have the following fields:

id: To store the index
Marketer's name: To store the name of the marketer
Marketer's e-mail: To store the e-mail address of the marketer
Marketer's password: To store the marketer's login password

Our SQL for creating the preceding fields is simple:

CREATE TABLE marketers (
id INT(11) AUTO_INCREMENT,
marketer_name VARCHAR(255) NOT NULL,
marketer_email VARCHAR(255) NOT NULL,
marketer_password VARCHAR(255) NOT NULL,

PRIMARY KEY `id`
);

In another table, we'll define the many-to-many relationship of marketers and their
newsletters that they manage.

We'll need an id to be the index, the ID of the marketer who owns the newsletter, and the
newsletter's ID, which is owned by the marketer.

The SQL to create this table is as follows:

CREATE TABLE newsletter_admins (
 Id INT(11) AUTO_INCREMENT,
 marketer_id INT(11) ,
 newsletter_id INT(11),
 PRIMARY KEY `id`,
);

Building a Social Newsletter Service

[57]

Now let's build a query for fetching the admins of a newsletter that they own. This is going
to be a simple class where we will reference all our database functions:

<?php
class NewsletterDb {
public $db;

function __construct($dbinstance) {
$this->db = $dbinstance;
}

//get admins = marketers
public function get_admins ($newsletter_id) {
$query = "SELECT * FROM newsletter_admins LEFT JOIN marketers ON
marketers.id = newsletter_admins.admin_id.WHERE
newsletters_admins.newsletter_id = '".$newsletter_id."'";
 $this->db->query($query);
}
}

Administration system for managing marketers
We need a way for the marketers to log in and be authenticated with a password. We need
a way for an admin to create the account and register a marketer and their newsletter.

Let's build that part first.

In our admin view, we'll need to set a default and ask for an authenticated password for
every action that is performed. This is something we don't need to store in the database
since there will be only one administrator.

In our config/admin.php file, we will define the username and the password as follows:

<?php
$admin_username = 'admin';
$password = 'test1234';
?>

We then just include the file in our login page, login.php.We will simply check for it. The
code for the login page is as follows:

<html>
<?php
if(isset($_POST['username']) && isset($_POST['password'])) {
 //check if they match then login

Building a Social Newsletter Service

[58]

 if($_POST['username'] == $admin_username
 && $_POST['password'] == $password) {
 //create session and login
 $_SESSION['logged_in'] = true;
 $_SESSION['logged_in_user'] = $admin_username;
 header('http://ourwebsite.com/admin/welcome_dashboard.php');
 }
 ?>
}
</html>

Notice that we have to set our website URL correctly, depending on where we're
developing it. In the preceding example, the page will redirect to
http://ourwebsite.com/admin/welcome_dashboard.php after logging in. We can
create variables to store the domain and the URL fragment to redirect to so that this can be
dynamic; see the following example:

$domain = 'http://ourwebsite.com';
$redirect_url = '/admin/welcome_dashboard.php';
header($domain . $redirect_url);

Once logged in, we'll need to build a simple CRUD (Create, Read, Update, Delete) system to
manage the marketers who will be administering their newsletters.

The following is the code to be able to get the list of marketers and the newsletters they
manage:

Function get_neewsletter_marketers() {
 $q = "SELECT * FROM marketers LEFT JOIN newsletters ';
 $q .= "WHERE marketers.id = newsletters.marketer_id";

 $res = $db->query($q);

 while ($row = $res->fetch_assoc()) {
 $marketers = array(
 'name' => $row['marketer_name'],
 'email' => $row['marketer_email'],
 'id' => $row['marketer_id']
);
 }
 return $marketers;
}

We'll need to add a way to edit, create, and delete marketers. Let's create a
dashboard/table_header.php to include at the top of our script.

http://ourwebsite.com/admin/welcome_dashboard.php

Building a Social Newsletter Service

[59]

The following is what the table_header.php code looks like:

<table>
<tr>
 <th>Marketer Email</th>
 <th>Edit</th>
 <th>Delete</th>
</tr>

We will now create a for() loop to loop through each of the marketer. Let's create a way to
select through all the marketers in our database. First, let's call our function to get data:

$marketrs = get_newsletter_marketers();

Then let's use a foreach() loop to loop through all the marketers:

foreach($marketers as $marketer) {
 echo '<tr><td>'. $marketer['email'] .'</td>
 <td>Edit</td>
 <td>delete</td>
 </tr>';
}
echo '</table>';

Then we end the code with a closing element for the table with </table>.

Let's create the delete_marketer.php script and the edit_marketer.php scripts. The
following will be the delete script:

function delete_marketer($marketer_id) {
 $q = "DELETE FROM marketers WHERE marketers.id = '" . $marketer_id .
"'";
 $this->db->query($q);
}
$marketer_id = $_GET['id'];
delete_marketer($marketer_id);

Here is the edit script composed of a form that will update the data once submitted:

if(empty($_POST['submit'])) {
 $marketer_id = $_GET['id'];
 $q = "SELECT * FROM marketers WHERE id = '" . $marketer_id."'";
 $res = $db->query($q);

 while ($row = $res->fetch_assoc()) {
 $marketer = array(
 'name' => $row['marketer_name'],

Building a Social Newsletter Service

[60]

 'email' => $row['marketer_email'],
 'id' => $row['id']
);
 }

 ?>
 <form action="update_marketer.php" method="post">
 <input type="hidden" name="marketer_id" value="<?php echo
$marketer['id'] ?>">
 <input type="text" name="marketer_name" value="<?php echo
$marketer['name'] ?>">
 <input type="text" name="marketer_email" value="<?php echo
$marketer['email'] ?>">
 <input type="submit" name="submit" />
</form>
 <?php
 } else {
 $q = "UPDATE marketers SET marketer_name='" . $_POST['marketer_name']
. ", marketer_email = '". $_POST['marketer_email']."' WHERE id =
'".$_POST['marketer_id']."'";
 $this->db->query($q);
 echo "Marketer's details has been updated";
 }
?>

Custom template for our newsletter
Every marketer needs to lay out their newsletter. In our case, we can allow them to create a
simple sidebar newsletter and a simple top-down newsletter. To build a simple sidebar, we
can create an HTML template that looks like the following:

<html>
<!doctype html>

<sidebar style="text-align:left">
{{MENU}}
</sidebar>

<main style="text-align:right">
 {{CONTENT}}
</main>
</html>

In the preceding code, we style the HTML e-mail using in-line tags simply because some e-
mail clients do not render stylesheets referenced from outside our HTML.

Building a Social Newsletter Service

[61]

We can use regex to substitute the {{MENU}} and {{CONTENT}} patterns with the data to
populate them.

Our database will store the content as JSON, and once we parse the JSON, we'll have the
content and menu data to insert into their respective places.

In our database, we need to add the newsletter_templates table. Here is how we will
create it:

CREATE TABLE newsletter_templates (
 Id INT(11) PRIMARY KEY AUTO_INCREMENT,
Newsletter_id INT(11) NOT NULL,
 Template TEXT NOT NULL,
 Created_by INT(11) NOT NULL
) ENGINE=InnoDB;

With the template in place, we need a way for marketers to update the template.

From the dashboard, we display a list of templates for the newsletter.

Let's create the form as follows:

$cleanhtml = htmlentities('<html>
<!doctype html>

<sidebar style="text-align:left">
{{MENU}}
</sidebar>

<main style="text-align:right">
 {{CONTENT}}
</main>
</html>
');
<form>
 <h2>Newsletter Custom Template</h2>
 <textarea name="customtemplate">
<?php echo $cleanhtml; ?>
</textarea>
 <input type="submit" value="Save Template" name="submit">
 </form>

We also populated the textarea by adding values to it. Note that in the preceding code,
we needed to clean the HTML code for the template using htmlentities first. This is
because our HTML might be interpreted as part of the web page and cause problems when
rendered by a browser.

Building a Social Newsletter Service

[62]

We now have everything in place in order for our newsletter to send an actual newsletter.
To do the sending, we'll need to create a script that will loop through all the members in a
newsletter and then simply use the PHP mail function to send them.

Using the PHP mail function, we just have to loop through all the newsletter members in
our database.

This is what that script looks like:

$template = require('template.class.php');
$q = "SELECT * FROM newsletter_members WHERE newsletter_id = 1"; //if we're
going to mail newsletter #1
$results = $db->query($q);
While ($rows =$results->fetch_assoc()) {
 //gather data
 $newsletter_title = $row['title'];
 $member_email = $row['template'];
 $menu = $row['menu']; //this is a new field to contain any menu html
 $content = $row['content'];
 $content_with_menu = $template->replace_menu($menu, $content);
 $emailcontent = $template->
replace_contents($content,$content_with_menu);
 //mail away!
 mail($member_email, 'info@maillist.com', $newsletter_title
,$email_content);
}

We need to complete the replace_menu and replace_contents functions. Let's simply
build the text replace function that will replace the content we have already fetched in the
preceding code. The data comes from the newsletter table in the database:

class Template {
 public function replace_menu($menu, $content) {
 return str_replace('{{MENU}}', $menu, $content);
 }
 public function replace_contents ($actualcontent, $content) {
 return str_replace('{{CONTENT}}', $actualcontent, $content);
 }
}

Note that we modified our table to have a menu in the newsletter. This menu must be
created by the user and with HTML markup. It will basically be an HTML list of links. The
proper markup for the menu should be like the following:

Building a Social Newsletter Service

[63]

 some URL
some new URL
some other URL

Link tracking
For our link tracking system, we will need to allow a marketer to embed links, which
actually pass through our system for us to keep track of the number of clicks on the link.

What we will do is actually create a service that will automatically shorten the links we
enter to a random hash. The URL will look like http://example.com/link/xyz123, and
the hash xyz123 will be stored in our database. When a user accesses the link, we'll match
the link.

Let's create the links table and create a function that will help us generate the shortened
links. At the bare minimum, we need to be able to store the title of the link, the actual link,
the shortened link, as well as who created the link so that we can put it on the marketer's
dashboard.

The SQL for the links table looks like the following:

CREATE TABLE links (
 id INT(11) PRIMARY KEY AUTO_INCREMENT,
 link_title TEXT NOT NULL,
 actual_link TEXT,
 shortened_link VARCHAR(255),
 created DATETIME,
 created_by INT(11)
);

Now let's create the following function, which will generate a random hash:

public function createShortLink($site_url,$title, $actual_url,$created_by)
{
 $created_date = date('Y-m-d H:i:s');
 $new_url = $site_url . "h?=" . md5($actual_url);
 $res = $this->db->query("INSERT INTO links VALUES (null, $title ,'".
$actual_url. "', '". $new_url.", '". $created_date."','".$created_by."'"),;
));
 return $res;
}

http://example.com/link/xyz123

Building a Social Newsletter Service

[64]

We also need to store the number of hits or clicks to the link. We will use another table that
will link link_id to the number of hits, and we'll just update that table every time someone
has used a shortened link:

CREATE TABLE link_hits (
 link_id INT(11),
 num_hits INT(11)
);

We won't need to index the preceding SQL table because we won't really need to do fast
searches on it. Every time we generate a new URL, we should populate the table already
with the num hits defaulting to 0:

Add the following function in the createShortLink function:

$res = $this->db->query("INSERT INTO links VALUES (null,
'$actual_url',$title, '$new_url', '$created_date', '$created_by'");
$new_insert_id = $this->db->insert_id;

$dbquery = INSERT INTO link_hits VALUES($new_insert_id,0);

$this->db->query($dbquery);

The insert_id is the ID of the last inserted record of MySQL. It's a function that returns
the new ID generated every time a new row is added.

Let's generate the link hit class that contains two functions, one to initialize the database
and another that will update the link_hits table every time a user clicks on a link:

Class LinkHit {

 Public function __construct($mysqli) {
 $this->db = $mysqli;
 }

 public function hitUpdate ($link_id) {

 $query = "UPDATE link_hits SET num_hits++ WHERE link_id='". $link_id.
"'";
 //able to update
 $this->db->query($query)
 }

 Public function checkHit ($shorturl) {
 $arrayUrl = parse_url($shortUrl);
parse_str($parts['query'],$query);
$hash = $query['h'];

Building a Social Newsletter Service

[65]

 $testQuery = $this->db->query("SELECT id FROM links WHERE shortened_link
LIKE '%$hash%'");
 if($this->db->num_rows > 0) {
 while($row = $testQuery->fetch_array()) {
 return $row['id'];
 }
 } else {
 echo "Could not find shorted link";
 return null;
 }
}

//instantiating the function:
$mysqli = new
mysqli('localhost','test_user','test_password','your_database');
$Link = new LinkHit($mysqli);
$short_link_id =
$Link->checkHit("http://$_SERVER[HTTP_HOST]$_SERVER[REQUEST_URI]");

if($short_link_id !== null) {
 $link->hitUpdate($isShort);
}

For our marketers to view the links, we will need to display their links on a links page in
our portal.

We create the function for checking the links and their hits that is attributed to the admin
user who is logged in:

$user_id = $_SESSION['user_id'];
$sql = "SELECT * FROM links LEFT JOIN link_hits ON links.id =
link_hits.link_id WHERE links.created_by='" . $user_id. "'";
$query = $mysqli->query($sql);
?>
<table>
<tr>
<td>Link id</td><td>Link hits</td></tr>
<?php
while($obj = $query->fetch_object()) {
 echo '<tr><td>'.$obj->link.'</td>
<td>' . $obj->link_hits.'</td></tr></tr>';
}
?>
</table>

Building a Social Newsletter Service

[66]

In the preceding code, we just got the logged-in user's ID by checking the variable
$_SESSION['user_id']. Then we performed an SQL query by executing the string
variable $SQL. After this, we loop through the results and show the results into an HTML
table. Note that we exit the PHP code when we display a permanent HTML markup such as
start of the table and the headers and the ending of the </table> tag.

PHP performs slightly better without using echo statements, and this is the beauty of PHP
scripting, you are really allowed to go into the PHP sections and then into the HTML
sections in your code. Your opinion may differ on the beauty of this idea, but we just want
to show what PHP can do in this exercise.

AJAX socket chat for support
This system allows the subscribers to contact the administrator of a particular newsletter
group. It will just contain a contact form. Also, we shall need to implement a way to send a
notification to the administrator in real time.

We will basically add a socket connection to the administrator so that when ever someone
sends an inquiry, it will flash a notification on the marketer's dashboard.

This is pretty simple with socket.io and a browser technology called WebSockets.

Introduction to socket.io
With socket.io, we don't need to create the code for checking the server periodically for an
event. We'll just pass through the data the user entered by using AJAX and trigger the
listeners to the sockets by emitting the events. It offers long polling and communication
through WebSockets and is supported by modern web browsers.

WebSockets extends the concept of having socket connections through a
browser. To read more on WebSockets, please visit h t t p : / / w w w . h t m l 5 r o c

k s . c o m / e n / t u t o r i a l s / w e b s o c k e t s / b a s i c s /.

A sample code on the socket.io site just includes the socket.io.js script:

<script src="socket.io/socket.io.js"></script>

Our PHP webserver will be using something called Ratchet, which has a website at
http://socketo.me. It basically allows us to use WebSockets for PHP.

http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://socketo.me

Building a Social Newsletter Service

[67]

Here is their website:

Ratchet is just a tool to allow PHP developers “to create real time, bi-directional applications
between clients over WebSockets“. By creating a bi-directional flow of data, it allows
developers to create things such as real-time chat and other real-time applications.

Let's get started by following their tutorial at h t t p : / / s o c k e t o . m e / d o c s / h e l l o - w o r l d.

With Ratchet, we have to install Composer and add the following to our composer.json
file in our project directory:

{
 "autoload": {
 "psr-0": {
 "MyApp": "src"
 }
 },
 "require": {
 "cboden/ratchet": "0.3.*"
 }
}

If you've had prior experience with Composer, basically what it does is use the psr-0
standard in writing the path to a script that needs autoloading. Then we run composer
install in the same directory. After having Ratchet set up, we need to set up the proper
components for handling certain events.

We need to create a folder labeled SupportChat and put Chat.php inside. This is because
using psr-0 in the preceding composer.json file, it expects a directory structure inside the
src directory.

http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world
http://socketo.me/docs/hello-world

Building a Social Newsletter Service

[68]

Let's create a class with the stubbed functions that we need to implement:

namespace SupportChat;
use Ratchet\MessageComponentInterface;
use Ratchet\ConnectionInterface;

class SupportChat implements MessageComponentInterface {
 Protected $clients;
 Public function __construct() {
 $this->clients = new \SplObjectStorage;
 }
}

We need to declare the $clients variable to store the clients that will connect to our chat
app.

Let's implement the interface for when the client opens a connection:

Public function onOpen(ConnectionInterface $conn) {
 $this->clients->attach($conn);
 echo "A connection has been established";
}

Now let's create the onMessage and onClose methods as follows:

Public function onMessage (ConnectionInterface $from, $msg) {
 foreach ($this->clients as $client) {
 if ($from !== $client) {
 $client->send($msg);
 }
 }
}

public function onClose(ConnectionInterface $conn) {
$this->clients->detach($conn);
}

Let's also create an onError method for handling errors as follows:

public function onError (ConnectionInterface $conn) {
$this->clients->detach($conn);
}

Now we need to implement the client (browser) side of the application.

Building a Social Newsletter Service

[69]

Create a file called app.js in your htdocs or public folder with the following code:

var messages = [];
// connect to the socket server
var conn = new WebSocket('ws://localhost:8088');
conn.onopen = function(e) {
 console.log('Connected to server:', conn);
}
conn.onerror = function(e) {
 console.log('Error: Could not connect to server.');
}
conn.onclose = function(e) {
 console.log('Connection closed');
}
// handle new message received from the socket server
conn.onmessage = function(e) {
 // message is data property of event object
 var message = JSON.parse(e.data);
 console.log('message', message);
 // add to message list
 var li = '' + message.text + '';
 $('.message-list').append(li);
}
// attach onSubmit handler to the form
$(function() {
 $('.message-form').on('submit', function(e) {
 // prevent form submission which causes page reload
 e.preventDefault();
 // get the input
 var input = $(this).find('input');
 // get message text from the input
 var message = {
 type: 'message',
 text: input.val()
 };
 // clear the input
 input.val('');
 // send message to server
 conn.send(JSON.stringify(message));
 });
});

We need to create the HTML for the preceding code to be used. We should name the
file app.js. Now, let's implement a simple input text for the user to enter their messages:

<!DOCTYPE html>
<html>
<head>

Building a Social Newsletter Service

[70]

 <title>Chat with Support</title>
 <script
src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.2.3/jquery.js"></scrip
t>
 <script src="app.js"></script>
</head>
<body>
 <h1>Chat with Support</h1>
 <h2>Messages</h2>
 <ul class="message-list">
 <form class="message-form">
 <input type="text" size="40" placeholder="Type your message here"
/>
 <button>Send message</button>
 </form>
</body>
</html>

App.js is where the JavaScript code we wrote earlier should go. We also need to create a
WebSocket server to handle the WebSocket on port 8088:

<?php
// import namespaces
use Ratchet\Server\IoServer;
use Ratchet\WebSocket\WsServer;
use SupportChat\Chat;
// use the autoloader provided by Composer
require dirname(__DIR__) . '/vendor/autoload.php';
// create a websocket server
$server = IoServer::factory(
 new WsServer(
 new Chat()
)
 , 8088
);
$server->run();

Our chat app is now ready for public use. However, we need to start our chat server, which
will handle WebSockets by starting it with php bin/server.php.

Building a Social Newsletter Service

[71]

Note that on Windows, it will prompt about the network being used:

Simply click on Allow access and then click on OK.

Now when we visit http://localhost/client.html, we should see the following:

However, we need to spiff up the contact form by adding the username and e-mail for
support to get back to him via e-mail in case no one from support is available to reply to the
user.

Building a Social Newsletter Service

[72]

Our form now looks as follows:

<form class="message-form" id="chatform">
 <input type="text" name="firstname" size="25" placeholder="Your
Name">
 <input type="text" name="email" size="25" placeholder="Email">

 <input type="text" name="message" size="40" placeholder="Type your
message here" />
 <button>Send message</button>
 </form>

Since we've added those details, we need to store them in our database. We can do this by
having all the data forwarded to another PHP script to do the sending. In JavaScript, the
code would add to the handler a way to send to the sendsupportmessage.php the values
from the form.

Here is how that JavaScript code, with jQuery, will look:

<script>
$(document).ready(function() {
 $('submit').on('click', function() {
 $.post('sendsupportmessage.php', $("#chatform").serialize())
 .done(function(data) {
 alert('Your message has been sent');
 });
 });
});
</script>

In the script that will receive the messages, sendsupportmessage.php, we'll need to parse
the information and create an e-mail to send to the support e-mail,
contact@yoursite.com; see the following example:

<?php
 if(!empty($_POST['message'])) {
 $message = htmlentities($_POST['message']);
 }

 if(!empty($_POST['email'])) {
 $email = htmlentities($_POST['email']);
 }
 if(!empty($_POST['firstname'])) {
 $firstname = htmlentities($_POST['firstname']);
 }

 $emailmessage = 'A support message from ' . $firstname . ';

Building a Social Newsletter Service

[73]

 $emailmessage .= ' with email address: ' . $email . ';
 $emailmessage .= ' has been received. The message is '. $message;
 mail('contact@yoursite.com', 'Support message', $emailmessage);

 echo "success!";
?>

The script just checks if the submitted values are not blank. By experience, using !empty
() instead of checking for a set value with the isset() function is better because an empty
string ('') may be evaluated by PHP to still be set:

$foo = '';
if(isset($foo)) { print 'But no its empty'; }
else { print 'PHP7 rocks!'; }

We now need to display to the user, as we sent the message to the server using AJAX, and
update the AJAX box. In the JavaScript code, we should change the .done() callback code
to the following:

.done(function(data) {
 if(data === 'succcess!') {
 var successHtml = 'Your message was sent';
 $('.message-list').append(successHtml);
 }
 }

Fantastic! Notice that we changed the alert box call and instead appended the message Your
message was sent back into the message list. Our support form now sends who the
message is from and our support team can receive the message in their e-mails.

Summary
You learned a lot in this chapter. To summarize, we built a simple admin system to manage
our marketers. After this, we also created a way for members of the newsletter to log in
which leads the user to a home page.

Then we reviewed how to send an e-mail with a simple template system, which allowed a
user to add his/her own menu and the content to the layout. We were also able to add
Facebook social login by using the Facebook PHP SDK and its authentication process.

Building a Social Newsletter Service

[74]

In the latter part of the chapter, we built a simple chat system that will send an e-mail
immediately to the support e-mail address of our website. We checked out Ratchet, a PHP
library to help us work with real-time messaging in PHP, and used AJAX to
asynchronously send the data to another script that will do the e-mailing to the support e-
mail.

We've now created an impressive newsletter app that is more than the regular, with social
login features and a support chat box, and allows other newsletter marketers to manage
their content through a website.

4
Build a Simple Blog with Search

Capability using Elasticsearch
In this chapter, we will create a simple blog that can create and delete posts. Then we will
work on adding some features to our blog such as the following:

Implement a very simple blog with CRUD and admin features
Work and install Elasticsearch and Logstash
Try out the PHP client of Elasticsearch
Learn to build a tool for working with Elasticsearch
Build a cache for searches to our database
Build a chart based on our Elasticsearch information

Creating the CRUD and admin system
First, let's build the SQL of our posts. The database table should contain at the very least the
post title, post content, post date, and modified and published dates.

This is what the SQL should look like:

CREATE TABLE posts(
id INT(11) PRIMARY KEY AUTO INCREMENT,
post_title TEXT,
post_content TEXT,
post_date DATETIME,
modified DATETIME,
published DATETIME
);

Build a Simple Blog with Search Capability using Elasticsearch

[76]

Now let's create a function to read the data. A typical blog site has comments and some
additional metadata for SEO related to the blog post. But in this chapter, we won't be
creating this part. Anyway, it should be fairly trivial to add a table relating to comments
data and to have data about SEO metadata about each post in another table.

Let's start by creating the admin system. We need to log in, so we'll have to create a simple
login-logout script:

//admin.php
<form action="admin.php" method="post">
Username: <input type="text" name="username">

Password: <input type="text" name="username">

<input type="submit" name="submit">
</form>
<?php
$db = new mysqli(); //etc

Function checkPassword($username, $password) {
//generate hash
 $bpassword = password_hash($password);

//clean up username for sanitization
$username = $db->real_escape_string($username);

 $query = mysqli_query("SELECT * FROM users WHERE
password='".$bpassword."' AND username = '". $username. "'");
if($query->num_rows() > 0) {
return true;
 }
return false;
}

if(isset$_POST[' assword']) && isset ($_POST['username'])) {
If(checkPassword($_POST['username'], $_POST['password'])) {
$_SESSION['admin'] = true;
$_SESSION['logged_in'] = true;
$_SESSION['expires'] = 3600; //1 hour
 $_SESSION['signin_time'] = time(); //unix time
 header('Location: admin_crud_posts.php');
}
else {
 //lead the user out
header('Location: logout.php');
 }
 }
}

Build a Simple Blog with Search Capability using Elasticsearch

[77]

When you log in to admin.php, you set the sessions and are then redirected to the CRUD
page.

The script for the admin CRUD page is as follows:

<?php
$db = new mysqli(); //etc
function delete($post_id) {
 $sql_query = "DELETE FROM posts WHERE id= '". $post_id."'";
 $db->query($sql_query);

}

function update($postTitle, $postContent, $postAuthor, $postId) {
$sql_query = "UPDATE posts
 SET title = '".$postTitle. "',
 post_content = '". $postContent. "',
 post_author='". $postAuthor."'
 WHERE id = '".$postId."'";
 $db->query($sql_query);
}

function create($postTitle, $postContent, $postAuthor) {

$insert_query = "INSERT INTO posts (null ,
 '" . $postTitle."',
 '". $postContent."',
 '" $postAuthor."')";
$db->query($insert_query);

}

$query = "SELECT * FROM posts";
$result = $db->query($query);

//display
?>
<table>
<tr>
<td>Title</td>
<td>Content</td>
<td>Author</td>
<td>Administer</td>
</tr>
while($row = $db->fetch_array($query,MYSQLI_ASSOC)) {
 $id = $row['id'];
echo '<tr>';

Build a Simple Blog with Search Capability using Elasticsearch

[78]

echo '<td>' .$row['title'] . '</td>';

echo '<td>' . $row['content'] . '</td>';

echo '<td>' . $row['author'] . '</td>';

echo '<td>Edit';
echo 'Delete'.</td>';'
echo '</tr>';
}
echo "</table>";

?>

In the preceding script, we simply defined some functions that will handle the CRUD
operations for us. To display the data, we just simply loop through the database and output
it in a table.

The edit and delete pages, which are the scripts needed for a user interface and functions to
edit or delete the posts, are as follows:

edit.php:

<?php
function redirect($home) {
header('Location: '. $home);
}
if(!empty($_POST)) {
 $query = 'UPDATE posts SET title='" . $_POST['title']. "', content='".
$_POST['content']."' WHERE id = ".$_POST['id'];
 $db->query($query);
 redirect('index.php');
} else {
 $id = $_GET['id'];
 $q = "SELECT * FROM posts WHERE id= '".$_GET['id'] . "'"
?>
<form action="edit.php" method="post">

<input name="post_title type="text" value=" ="<?php echo $_POST[
title'] ?>">

<input type="text" value="<?php echo $_POST['content'] ?>">

<input type="hidden" value="<?php echo $_GET['id'] ?>">

</form>
<?php
}

Build a Simple Blog with Search Capability using Elasticsearch

[79]

?>

Let's create the actual functionality for deleting the post. Following is how delete.php
would look like:

<?php

function redirect($home) {
 header('Location: '. $home);
}
if(isset ($_GET['postid'])) {
 $query = "DELETE FROM posts WHERE id = '".$_GET['post_id']."'";
$db->query($query);
redirect('index.php');
}

Our logger for PHP, Monolog, will add the posts to the Elasticsearch using the Logstash
plugin for Elasticsearch.

We'll set up a Logstash plugin, which first checks if the document exists and, if not, then
inserts it.

To update Elasticsearch, we'll need to perform an upsert, which will update the same
record if it exists, and if it does not exist, it will create a new one.

Also, we've implemented a way to delete the post from being visible in our CRUD, but not
actually delete it from the database, as we'll need it for retrieval purposes.

For every action that needs to be done, we simply use the $_GET['id'] to determine what
we are going to do when that is clicked.

Like any blog, we need a front page for the user to display the posts that are available to
read:

index.php:

<html>
<?php
$res = $db->query("SELECT * FROM posts LIMIT 10");
foreach$posts as $post {
<h1><?phpecho $post[]?>
?>
}
?>

Build a Simple Blog with Search Capability using Elasticsearch

[80]

In the preceding code, we make extensive use of shorthand opening php tags so that we can
focus on the page layout. Notice how it weaves in and out of PHP mode, but it looks like we
are just using a template, meaning we can see the general outline of the HTML markup
without getting too much into the details of the PHP code.

Seeding the post table
Without any data, our blog is useless. Therefore, for demonstration purposes, we'll just use
a seeder script to automatically populate our table with data.

Let's use a popular library for generating fake content, Faker, which is available at h t t p s : /

/ g i t h u b . c o m / f z a n i n o t t o / F a k e r.

With Faker, all you have to do is load it by providing the required path to its
autoload.php file and load it using composer (composer require
fzaninotto/faker).

The complete script for generating fake content is as follows:

<?php
require "vendor/autoload";
$faker = FakerFactory::create();
for($i=0; $i < 10; $i++) {
 $id = $i;
 $post = $faker->paragraph(3, true);
 $title = $faker->text(150);
 $query = "INSERT INTO posts VALUES (".$id.",'".$title."','".$post .
"','1')"
}

?>

Now let's move on to getting acquainted with Elasticsearch, the database search engine for
our blog posts.

What is Elasticsearch?
Elasticsearch is a search server. It's a full-text search engine that comes with an HTTP web
interface and schema-free JSON documents. What this means is that we store new
searchable data by using JSON. The API to enter these documents uses the HTTP protocol.
In this chapter, we will learn how to use PHP and build a rich search engine that can do the
following:

https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker

Build a Simple Blog with Search Capability using Elasticsearch

[81]

Set up the Elasticsearch PHP client
Add search data to Elasticsearch for indexing
Learn how to use keywords for relevance
Cache our search results
Use Elasticsearch with Logstash to store apache logs
Parse XML for storage into Elasticsearch

Installing Elasticsearch and the PHP client
Creating the web interface for consumption of Elasticsearch.

As far as you need to know, Elasticsearch just needs to be installed by simply using the
latest source code of Elasticsearch.

The installation instructions are as follows:

Go to h t t p s : / / w w w . e l a s t i c . c o / and download the source file that's related to1.
your computer system, whether it's a Mac OSX, a Linux, or a Windows machine.
After downloading the file to your computer, you should run the setup2.
installation notes.
For example, for Mac OSX and Linux operating systems, you can do the3.
following:

Install Java 1.8.
Download Elasticsearch through curl (in the command line):

 curl -L -O
 https://download.elastic.co/elasticsearch/release/org/elasticsearch
 /distribution/tar/elasticsearch/2.1.0/elasticsearch-2.1.0.tar.gz

Extract the archive and change directory into it:

 tar -zxvf elasticsearch-2.1.0.tar.gz
 cd /path/to/elasticsearch/archive

Start it up:

 cd bin
 ./elasticsearch

https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/

Build a Simple Blog with Search Capability using Elasticsearch

[82]

An alternative way to install Elasticsearch for Mac OSX is using homebrew, which is
available at h t t p : / / b r e w . s h /. Then, install it by using brew with the following command:

 brew install elasticsearch

For Windows operating systems, you just need to click through the wizard1.
installation program, as shown in the following screenshot:

Once that is installed, you also need to install the Logstash agent. The Logstash2.
agent is in charge of sending data to Elasticsearch from various input sources.
You can download it from the Elasticsearch website and follow the installation3.
instructions for your computer system.
For Linux, you can download a tar file and then you just have the other way for4.
Linux, that is to use the package manager, which is either apt-get or yum,
depending on your flavor of Linux.

You can test Elasticsearch by installing Postman and doing a GET request to
http://localhost:9200:

Install Postman by opening Google Chrome and visiting h t t p s : / / w w w . g e t p o s t m1.
a n . c o m /. You can install it on Chrome by going to add-ons and searching for
Postman.
Once Postman is installed, you can register or skip registration:2.

http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/

Build a Simple Blog with Search Capability using Elasticsearch

[83]

Now try doing a GET request to http://localhost:9200:3.

Build a Simple Blog with Search Capability using Elasticsearch

[84]

The next step is to try out the PHP client library for Elasticsearch in your4.
composer. Following is how to do that:
First, include Elasticsearch in your composer.json file:5.

 {
 "require":{
 "elasticsearch/elasticsearch":"~2.0"
 }
 }

Get composer:6.

 curl-s http://getcomposer.org/installer | php
 phpcomposer.phar install --no-dev

Instantiate a new client by including it in your project:7.

 require'vendor/autoload.php';

 $client =Elasticsearch\ClientBuilder::create()->build();

Now let's try indexing a document. To do so, let's create a PHP file to use the PHP client as
follows:

$params=[
 'index'=> 'my_index',
 'type'=> 'my_type',
 'id'=> 'my_id',
 'body'=>['testField'=> 'abc']
];

$response = $client->index($params);
print_r($response);

We can also retrieve that document by creating a script with the following code:

$params=[
 'index'=> 'my_index',
 'type'=> 'my_type',
 'id'=> 'my_id'
];

$response = $client->get($params);
print_r($response);

Build a Simple Blog with Search Capability using Elasticsearch

[85]

If we're performing a search, the code is as follows:

$params=[
 'index'=> 'my_index',
 'type'=> 'my_type',
 'body'=>[
 'query'=>[
 'match'=>[
 'testField'=> 'abc'
]
]
]
];

$response = $client->search($params);
print_r($response);

In a nutshell, the Elasticsearch PHP client makes it easier to insert, search, and get a
document from Elasticsearch.

Building a PHP Elasticsearch tool
The aforementioned functionality can be used to create a PHP-backed user interface to
insert, query, and search for documents using the Elasticsearch PHP client.

Here is a simple bootstrap (an HTML CSS framework) form:

<div class="col-md-6">
<div class="panel panel-info">
<div class="panel-heading">Create Document for indexing</div>
<div class="panel-body">
<form method="post" action="new_document" role="form">
<div class="form-group">
<label class="control-label" for="Title">Title</label>
<input type="text" class="form-control" id="newTitle" placeholder="Title">
</div>
<div class="form-group">
<label class="control-label" for="exampleInputFile">Post Content</label>
<textarea class="form-control" rows="5" name="post_body"></textarea>
<p class="help-block">Add some Content</p>
</div>
<div class="form-group">
<label class="control-label">Keywords/Tags</label>
<div class="col-sm-10">
<input type="text" class="form-control" placeholder="keywords, tags, more
keywords" name="keywords">
</div>

Build a Simple Blog with Search Capability using Elasticsearch

[86]

<p class="help-block">You know, #tags</p>
</div>
<button type="submit" class="btnbtn-default">Create New Document</button>
</form>
</div>
</div>
</div>

This is what the form should look like:

When the user submits the details of the content, we'll need to catch the content, keywords,
or tags that the user has inputted. The PHP script that will enter the inputs into MySQL and
then into our script, which will push it onto our Elasticsearch:

public function insertData($data) {
 $sql = "INSERT INTO posts ('title', 'tags', 'content') VALUES('" .
$data['title] . "','" . $data['tags'] . "','" .$data['content'] . ")";
mysql_query($sql);
}

insertData($_POST);

Now let's try to post this document to Elasticsearch as well:

$params=[
 'index'=> 'my_posts',
 'type'=>'posts',
 'id'=>'posts',
 'body'=>[
 'title'=>$_POST['title'],
 'tags' => $_POST['tags'],

Build a Simple Blog with Search Capability using Elasticsearch

[87]

 'content' => $_POST['content']
]
];

$response = $client->index($params);
print_r($response);

Adding documents to our Elasticsearch
Elasticsearch uses indexes to store each data point into its database. From our MySQL
database, we need to post the data into Elasticsearch.

Let's discuss how indexing in Elasticsearch actually works. What makes it faster than
conventional search by MySQL is that it searches the index instead.

How does indexing work in Elasticsearch? It uses theApache Lucene to create something
called an inverted index. An inverted index means that it looks up the search terms without
having to scan every single entry. It basically means that it has a lookup table that lists all
the words ever entered the system.

Here is an overview of the architecture of the ELK stack:

In the preceding diagram, we can see that INPUT SOURCES, usually the logs or some
other data source, goes into Logstash. From Logstash, it then goes into Elasticsearch.

Once the data reaches Elasticsearch, it goes through some tokenizing and filtering.
Tokenizing is the process of dissecting strings into different parts. Filtering is when some
terms are sorted into separate indexes. For example, we may have an Apache log index, and
then also have another input source, such as Redis, pushing into another searchable index.

Build a Simple Blog with Search Capability using Elasticsearch

[88]

The searchable index is the reversed index we mentioned previously. A searchable index is
basically made searchable by storing each term and referring to their original content into
an index. It's similar to what is done in an indexed database. It is the same process when we
create primary keys and use it as the index to search entire records.

You can have many nodes performing this indexing in a cluster, all handled by the
Elasticsearch engine. In the preceding diagram, the nodes are labeled N1 to N4.

Querying Elasticsearch
We now understand each part, so how do we query Elasticsearch? First, let's get introduced
to Elasticsearch. When you start running Elasticsearch, you should send an HTTP request to
http://localhost:9200.

We can do this using the Elasticsearch web API, which allows us to use RESTful HTTP
requests to the Elasticsearch server. This RESTful API is the only way to insert records into
Elasticsearch.

Installing Logstash
Logstash is simply the central logging system where all the messages going to Elasticsearch
will pass through.

To set up Logstash, follow the guide that's available on the Elasticsearch website:

h t t p s : / / w w w . e l a s t i c . c o / g u i d e / e n / l o g s t a s h / c u r r e n t / g e t t i n g - s t a r t e d - w i t h - l o g s t a

s h . h t m l.

Elasticsearch and Logstash work together to get different types of indexed logs into
Elasticsearch.

We need to create something called a transport or middleware between the two data points.
To do so, we need to set up Logstash. It is known as the ingestion workhorse for
Elasticsearch and much more. It is a data collection engine that pipelines data from data
source to the destination, which is Elasticsearch. Logstash is basically like a simple data
pipeline.

We will create a cronjob, which is basically a background task, that will add new entries
from our post table and put them into Elasticsearch.

Unix and Linux users who are familiar with the concept of a pipe, | , will be familiar with
what a pipeline does.

https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html

Build a Simple Blog with Search Capability using Elasticsearch

[89]

Logstash simply transforms our raw log messages into a format called JSON.

JSON, also known as JavaScript Object Notation, is a popular format for
transferring data between web services. It is lightweight, and many
programming languages, including PHP, have a way to encode and
decode JSON-formatted messages.

Setting up the Logstash configuration
The input part of a Logstash configuration is concerned with reading and parsing log data
correctly. It consists of the input data source and the parser to use. Here is a sample
configuration where we will read from a redis input source:

input {
redis {
key =>phplogs
data_type => ['list']
 }
}

But first, to be able to push to redis, we should install and use phpredis, an extension
library that allows PHP to insert data into redis.

Installing PHP Redis
Installing PHP Redis should be simple. It's available in most package repositories for Linux
platforms. You can read the documentation on how to install it at h t t p s : / / g i t h u b . c o m / p h

p r e d i s / p h p r e d i s.

Once you have it installed, you can test that your PHP Redis installation is working by
creating the following script and running it:

<?php
$redis = new Redis() or die("Cannot load Redis module.");
$redis->connect('localhost');
$redis->set('random', rand(5000,6000));
echo $redis->get('random');

In the preceding example, we're able to start a new Redis connection and from there set a
key called random to a number between 5000 and 6000. Finally, we echo out the data that
we've just entered by calling echo $redis->get('random').

https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis

Build a Simple Blog with Search Capability using Elasticsearch

[90]

With that in place, let's create the real PHP code using the logging library for PHP, called
Monolog, to store our logs in Redis.

Let's create a composer.json that the logging project will use.

In the terminal, let's run the initialize composer:

composer init

It will interactively ask some questions after which it should create a composer.json file.

Now install Monolog by typing the following:

composer require monolog/monolog

Let's set up the PHP code that will read from our MySQL database and then push it over to
Elasticsearch:

<?php
require'vendor/autoload.php'

useMonolog\Logger;
useMonolog\Handler\RedisHandler;
useMonolog\Formatter\LogstashFormatter;
usePredis\Client;

$redisHandler=newRedisHandler(newClient(),'phplogs');
$formatter =newLogstashFormatter('my_app');
$redisHandler->setFormatter($formatter);

// Create a Logger instance
$logger =newLogger('logstash_test', array($redisHandler));
$logger->info('Logging some infos to logstash.');

In the preceding code, we've created a redisHandler with the name of the logs to be called
phplogs. We then set the LogstashFormatter instance to use the application name
my_app.

At the end of the script, we create a new logger instance, connect it to the redisHandler,
and call the info() method of the logger to log the data.

Monolog separates the responsibilities of the formatter from the actual logging. The logger
is responsible for creating the messages, and the Formatter formats the messages into the
appropriate format so that Logstash can understand it. Logstash, in turn, pipes it to
Elasticsearch, where the data about the log is indexed and is stored in the Elasticsearch
index for querying later.

Build a Simple Blog with Search Capability using Elasticsearch

[91]

That's the wonderful thing about Elasticsearch. As long as you have Logstash, you can
choose from different input sources for Logstash to process and Elasticsearch will do its job
of saving the data when Logstash pushes to it.

Encoding and decoding JSON messages
Now that we know how to work with the Monolog library, we need to integrate it into our
blog application. We'll do so by creating a cronjob that will check for new blog posts for that
day and store them in Elasticsearch through the use of a PHP script.

First, let's create a folder called server_scripts where we put all our cronjobs:

$ mkdir ~/server_scripts
$ cd ~/server_scripts

Now, here is our code:

<?php
$db_name = 'test';
$db_pass = 'test123';
$db_username = 'testuser'
$host = 'localhost';
$dbconn = mysqli_connect();
$date_now = date('Y-m-d 00:00:00');
$date_now_end = date('Y-m-d 00:00:00',mktime() + 86400);
$res = $dbcon->query("SELECT * FROM posts WHERE created >= '". $date_now."'
AND created < '". $date_now_end. "'");

while($row = $dbconn->fetch_object($res)) {
 /* do redis queries here */

}

Using Logstash, we can read from our redis data and let it do its work, which would then
process it and output it with the following output plugin code for Logstash:

output{
elasticsearch_http{
host=> localhost
}
}

Build a Simple Blog with Search Capability using Elasticsearch

[92]

Storing Apache logs in Elasticsearch
Monitoring logs is an important aspect of any web application. Most critical systems have
what is known as a dashboard, and that is exactly we will build in this segment with PHP.

As a bonus to this chapter, let's talk about another logging topic, server logs. Sometimes we
want to be able to determine the performance of the server at a certain time.

Another thing you can do with Elasticsearch is to store Apache logs. For our application, we
can add this so that we know about our users a little bit more.

This could be useful, for example, if we're interested in monitoring the browser a user is
using and where users are coming from when they access our site.

To do so, we just have to set up some configuration using the Apache input plugin as
follows:

input {
file {
path => "/var/log/apache/access.log"
start_position => beginning
ignore_older => 0
 }
}

filter {
grok {
match => { "message" => "%{COMBINEDAPACHELOG}"}
 }
geoip {
source => "clientip"
 }
}

output {
elasticsearch {}
stdout {}
}

A Kibana dashboard may be created when you install Kibana from Elasticsearch; however,
it requires end users to already know how to use the tool to create various queries.

However, there is a need to make it simpler for upper management to view the data
without having to know how to create Kibana dashboards.

Build a Simple Blog with Search Capability using Elasticsearch

[93]

For our end users to not have to learn how to use Kibana and create dashboards, we will
simply query the ILog information when the dashboard page is requested. For the charting
library, we will use a popular library known as Highcharts. To get the information,
however, we will need to create a simple query that will return some information to us in
JSON format.

Handle the Apache logs, we can create it using PHP Elasticsearch client library. It's a simple
client library that allows us to query Elasticsearch for information that we need, including
the number of hits.

We will create a simple histogram for our website to show the number of accesses that are
logged in our database.

For example, we'll use the PHP Elasticsearch SDK to query Elasticsearch and display the
Elasticsearch results.

We also have to make the histogram dynamic. Basically, when the user wants to select
between certain dates, we should be able to set up Highcharts to just get the data points and
create a graph. If you haven't checked out Highcharts, please refer to h t t p : / / w w w . h i g h c h a r

t s . c o m /.

Getting filtered data to display with Highcharts
Like any chart user, we sometimes require the ability to filter down whatever we see in our
graph. Instead of relying on Highcharts to give us controls to filter down our data, we
should be able to do the filtering by changing the data that Highcharts will render.

http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/

Build a Simple Blog with Search Capability using Elasticsearch

[94]

In the following Highcharts code, we are adding the following container divider for our
page; first, we get the data from our Elasticsearch engine using JavaScript:

<script>

$(function () {
client.search({
index: 'apachelogs',
type: 'logs',
body: {
query: {
 "match_all": {
 },
 {
 "range": {
 "epoch_date": {
 "lt": <?php echo mktime(0,0,0, date('n'), date('j'),
date('Y')) ?>,

 "gte": <?php echo mktime(0,0,0, date('n'), date('j'),
date('Y')+1) ?>
 }
 }
 }
 }
 }
}).then(function (resp) {
var hits = resp.hits.hits;
varlogCounts = new Array();
 _.map(resp.hits.hits, function(count)
 {logCounts.push(count.count)});

 $('#container').highcharts({
chart: {
type: 'bar'
 },
title: {
text: 'Apache Logs'
 },
xAxis: {
categories: logDates
 },
yAxis: {
title: {
text: 'Log Volume'
 }
 },
 plotLines: [{

Build a Simple Blog with Search Capability using Elasticsearch

[95]

 value: 0,
 width: 1,
 color: '#87D82F'
 }]
 },
 tooltip: {
 valueSuffix: ' logs'
 },
 plotOptions: {
 series: {
 cursor: 'pointer',
 point: {
 },
 marker: {
 lineWidth: 1
 }
 }
 },
 legend: {
 layout: 'vertical',
 align: 'right',
 verticalAlign: 'middle',
 borderWidth: 0
 },
 series: [{
 name: 'Volumes',
 data: logCounts
 }]
 });

}, function (err) {
console.trace(err.message);
 $('#container').html('We did not get any data');
});

});
 </script>

 <div id="container" style="width:100%; height:400px;"></div>

This is done is using the filter command of JavaScript and then parsing that data into our
Highcharts graph. You'll also need to use underscore for the filtering function, which will
help sort out which data we want to present to the user.

Let's first build the form to filter our Highcharts histogram.

Build a Simple Blog with Search Capability using Elasticsearch

[96]

This is what the HTML code for the search filter in the CRUD view will look like:

<form>
<select name="date_start" id="dateStart">
<?php
$aWeekAgo = date('Y-m-d H:i:s', mktime(7 days))
 $aMonthAgo = date(Y-m-d H:i:s', mktime(-30));
//a month to a week
<option value="time">Time start</option>
</select>
<select name="date_end" id="dateEnd">
<?php
 $currentDate= date('Y-m-d H:i:s');
$nextWeek = date('', mktime(+7 d));
 $nextMonth = date(,mktime (+30));
?>
<option value=""><?php echo substr($currentData,10);?>
</option>
<button id="filter" name="Filter">Filter</button>
</form>

To enable quick re-rendering of our graph, we have to attach a listener using plain old
JavaScript every time the filter button is clicked and then simply erase the information of
the div element that contains our Highcharts graph.

The following JavaScript code will update the filter using jQuery and underscore and the
same code in the first bar chart:

<script src="https://code.jquery.com/jquery-2.2.4.min.js"
integrity="sha256-BbhdlvQf/xTY9gja0Dq3HiwQF8LaCRTXxZKRutelT44="
crossorigin="anonymous"></script>

<script src="txet/javascript">
$("button#filter").click {
dateStart = $('input#dateStart').val().split("/");
dateEnd = $('input#dateEnd').val().split("/");
epochDateStart = Math.round(new Date(parseInt(dateStart[])]),
parseInt(dateStart[1]), parseInt(dateStart[2])).getTime()/1000);
epochDateEnd = Math.round(new Date(parseInt(dateEnd [])]), parseInt(dateEnd
[1]), parseInt(dateEnd[2])).getTime()/1000);

 };

client.search({
index: 'apachelogs',
type: 'logs',
body: {

Build a Simple Blog with Search Capability using Elasticsearch

[97]

query: {
 "match_all": {
 },
 {
 "range": {
 "epoch_date": {
 "lt": epochDateStart,

 "gte": epochDateEnd
 }
 }
 }
 }
 }
}).then(function (resp) {
var hits = resp.hits.hits; //look for hits per day fromelasticsearch apache
logs
varlogCounts = new Array();
 _.map(resp.hits.hits, function(count)
 {logCounts.push(count.count)});

$('#container').highcharts({
chart: {
type: 'bar'
 },
title: {
text: 'Apache Logs'
 },
xAxis: {
categories: logDates
 },
yAxis: {
title: {
text: 'Log Volume'
 }
 }

 });
});
</script>

In the preceding code, we've included jquery and underscore libraries. When the button is
clicked to focus on some dates, we set $_GET['date'] through the form and then PHP gets
the information using a simple trick where we re-render the div containing the graph by
simply flushing the ihtml elements inside it, and then asking Highcharts to re-render the
data.

Build a Simple Blog with Search Capability using Elasticsearch

[98]

To make this a little cooler, we can use a CSS animation effect so it looks like we're focusing
a camera.

This can be done using the jQuery CSS transform techniques, and then resizing it back to
normal and reloading a new graph:

$("button#filter").click(function() {
 //..other code
 $("#container").animate ({
width: ["toggle", "swing"],
height: ["toggle", "swing"]
});
});

Now we've learned how to filter using JavaScript and allow filtering of the JSON data using
the filter style. Take note that filter is a relatively new JavaScript function; it only got
introduced with ECMAScript 6. We've used it to create the dashboard that upper
management needs to be able to generate reports for their own purposes.

We can use the underscore library, which has the filter function.

We'll just load the latest logs that are in Elasticsearch, and then, if we want to perform a
search, we'll create a way to filter and specify what data to search in the logs.

Let's create the Logstash configuration for Apache's logs to be grokked by Elasticsearch.

All we need to do is point the input Logstash configuration to our Apache logs location
(usually a file in the /var/log/apache2 directory).

This is the basic Logstash configuration for Apache, which reads the Apache access log file
at /var/log/apache2/access.log:

input { file {
path => '/var/log/apache2/access.log'
 }
}

filter {
grok {
 match =>{ "message" => "%{COMBINEDAPACHELOG}" }
 }
date {
match => ["timestamp" , "dd/MMM/yyyy:HH:mm:ss Z"]
 }
}

Build a Simple Blog with Search Capability using Elasticsearch

[99]

It uses something called a grok filter that matches anything that resembles an Apache log
format and matches the timestamp to the dd/MMM/yyyy:HH:mm:ss Z date format.

If you think of Elasticsearch as the end of the rainbow and Apache logs as the start of the
rainbow, then Logstash is like the rainbow that transports the logs from both ends into a
format that Elasticsearch can understand.

Grokking is the term used to describe reformatting a message format into something that
Elasticsearch can interpret. This just means that it will search for a pattern and filter match
for that pattern in particular, it will look up the log's timestamp and message and other
attributes in JSON, which is what Elasticsearch then stores in its database.

Dashboard app for viewing Elasticsearch logs
Let's now create a dashboard for our blog that will allow us to see the data that we have in
Elasticsearch, both posts and Apache logs. We'll use the PHP Elasticsearch SDK to query
Elasticsearch and display the Elasticsearch results.

We'll just load the latest logs that are in Elasticsearch, and then, if we want to perform a
search, we'll create a way to filter and specify what data to search in the logs.

This is what the search filter form will look like:

In search.php, we'll create a simple form for searching values in Elasticsearch:

<form action="search_elasticsearch.php" method="post">
<table>
 <tr>
<td>Select time or query search term
<tr><td>Time or search</td>
<td><select>
 <option value="time">Time</option>
 <option value="query">Query Term</option>
<select>
</td>
</tr>

Build a Simple Blog with Search Capability using Elasticsearch

[100]

<tr>
<td>Time Start/End</td>
 <td><input type="text" name="searchTimestart" placeholder="YYYY-MM-DD
HH:MM:SS" > /
 <input type="text" name="searchTimeEnd" placeholder="YYYY-MM-DD HH:MM:SS"
>
</td>
</tr>
<tr>
<td>Search Term:</td><td><input name="searchTerm"></td>
</tr>
<tr><td colspan="2">
<input type="submit" name="search">
</td></tr>
</table>
</form>

When the user clicks on Submit, we will then show the results to the user.

Our form should simply show us what records we have for that day for both the Apache
logs and the blog posts.

This is how we query ElasticSearch for that information in the command line using curl:

 $ curl http://localhost:9200/_search?q=post_date>2016-11-15

Now we'll get a JSON response from Elasticsearch:

{"took":403,"timed_out":false,"_shards":{"total":5,"successful":5,"failed":
0},"hits":{"total":1,"max_score":0.01989093,"hits":[{"_index":"posts","_typ
e":"post","_id":"1","_score":0.01989093,"_source":{
 body: {
 "user" : "kimchy",
 "post_date" : "2016-11-15T14:12:12",
 "post_body" : "trying out Elasticsearch"
 }
}}]}}

We can use a REST client (a way to query RESTful API's in Firefox) as well to query the
database just specify the GET method and the path and set the q variable in the URL to the
parameters you want to search:

Build a Simple Blog with Search Capability using Elasticsearch

[101]

Simple search engine with result caching
To install the PHP Redis, visit https://github.com/phpredis/phpredis.

Every time the user searches, we can save their recent searches in Redis and just present
those results if they already exist. The implementation might looks as follows:

<?php
$db = new mysqli(HOST, DB_USER, DB_PASSWORD, DB_NAME); //define the
connection details
if(isset($_POST['search'])) {

$hashSearchTerm = md5($_POST['search']);
 //get from redis and check if key exist,
 //if it does, return search result
 $rKeys = $redis->keys(*);
 if(in_array($rKeys, $hashSearchTerm){
 $searchResults = $redis->get($hashSearchTerm);
 echo "";
 foreach($searchResults as $result) {
 echo "
 <a href="readpost.php?id=" . $result ['postId'].

https://github.com/phpredis/phpredis

Build a Simple Blog with Search Capability using Elasticsearch

[102]

"">".$result['postTitle'] . "
 " ;
 echo "";
 }
 } else {
 $query = "SELECT * from posts WHERE post_title LIKE
'%".$_POST['search']."%' OR post_content LIKE '%".$_POST['search']."%'";

 $result = $db->query($query);
 if($result->num_rows() > 0) {
 echo ";"
 while ($row = $result->fetch_array(MYSQL_BOTH))
 {
 $queryResults = [
 'postId' => $row['id'],
 'postTitle' => $row['post_title'];
];

 echo "
 ".$row['post_title'] .
"
 " ;
 }
 echo "";
 $redis->setEx($hashSearchTerm, 3600, $queryResults);

 }
 }
} //end if $_POST
else {
 echo "No search term in input";
}
?>

Redis is a simple dictionary. It stores a key and the value of that key in its database. In the
preceding code, we use it to store a reference to the user's search results so that next time
the same search is performed, we can just pull what we have from the Redis data.

In the preceding code, we converted the search term into a hash so that it can be easily
identified as the same query that came through and it can be stored easily as the key (which
should be one string only, no spaces allowed). If after hashing we find the key in Redis,
then we get it from Redis instead of fetching it from the database.

Redis can expire keys by saving the key using the $redis->setEx method, which allows
us to store the key and expire it after X number of seconds. In this case, we're storing it for
3,600 seconds, which is equivalent to an hour.

Build a Simple Blog with Search Capability using Elasticsearch

[103]

Cache basics
The concept of a cache is to return the already searched items back to the user so that for
other users who are searching for the same exact search results, the application should no
longer need to do a full database fetch from the MySQL database.

The bad thing with having a cache is that you have to perform cache invalidation.

Cache invalidation of Redis data
Cache invalidation is when you need to expire and delete the cache data. This is because
your cache may no longer be real time after a while. Of course, after invalidation, you need
to renew the data in the cache, which happens when there is a new request to the data. The
cache invalidation process can take one of the following three methods:

Purge is when we remove content from the cache data right away.
Refresh just means get new data and overwrite the already existing data. This
means that even though there is a match in the cache, we will refresh that match
with the new information fresh from wherever it comes from.
Ban is basically adding previously cached content to a ban list. When another
client fetches the same information and, upon checking the blacklist, if it already
exists, the cached content just gets updated.

We can run a cronjob continuously in the background that will update every cache result
with new results for that search.

This is what the background PHP script that runs every 15 minute might look like in
crontab:

0,15,30,45 * * * * php /path/to/phpfile

To get Logstash to put data in Redis, we just need to do the following:

shipper from apache logs to redis data
output {
redis { host => "127.0.0.1" data_type => "channel" key => "logstash-
%{@type}-%{+yyyy.MM.dd.HH}" }
}

Build a Simple Blog with Search Capability using Elasticsearch

[104]

This is how the PHP script that deletes data from the cache would work:

functiongetPreviousSearches() {
return $redis->get('searches'); //an array of previously searched
searchDates
}

$prevSearches = getPreviousSearches();

$prevResults = $redis->get('prev_results');

if($_POST['search']) {

 if(in_array($prevSEarches)&&in_array($prevResults[$_POST['search']])) {
if($prevSEarches[$_POST['search'])] {
 $redis->expire($prevSearches($_POST['searchDate'])) {
 Return $prevResults[$_POST['search']];
} else {
 $values =$redis->get('logstash-'.$_POST['search']);
 $previousResults[] = $values;
 $redis->set('prev_results', $previousResults);
 }
}
 }
 }

In the preceding script, we basically check the searchDate searched earlier, and if we have
it, we set it to expire.

If it also appears in the previousResults array, we give that to the user; otherwise, we do
a new redis->get command to get the results for that searched date.

Using browser localStorage as cache
Another option for cache storage is to save it in the client browser itself. The technology is
known as localStorage.

We can use it as a simple cache for the user and store the search results, and if the user
wants to search for the same thing, we just check the localStorage cache.

localStorage can only store 5 MB of data. But this is quite a lot
considering that a regular text file is just a few kilobytes.

Build a Simple Blog with Search Capability using Elasticsearch

[105]

We can make use of the elasticsearch.js client instead of the PHP client to make
requests to our Elasticsearch. The browser-compatible version can be downloaded from h t t
p s : / / w w w . e l a s t i c . c o / g u i d e / e n / e l a s t i c s e a r c h / c l i e n t / j a v a s c r i p t - a p i / c u r r e n t / b r o

w s e r - b u i l d s . h t m l.

We can also use Bower to install the elasticsearch.js client:

bower install elasticsearch

For our purpose, we can take advantage of the jQuery Build by creating a client using
jQuery:

var client = new $.es.Client({
hosts: 'localhost:9200'
});

We should now be able to use JavaScript to populate the localStorage.

Since we are just querying and displaying on the client side, it's a perfect match!

Take note that we might not be able to log the data that was searched for by using a client-
side script. However, we could save the search query history as a model containing the
items keys that were searched for.

The basic JavaScript searchQuery object would look like the following:

varsearchQuery = {
search: {queryItems: [{
'title: 'someName',
 'author': 'Joe',
 'tags': 'some tags'}
] };
};

We can test whether the client works by running the following JavaScript file:

client.ping({
requestTimeout: 30000,

 // undocumented params are appended to the query string
hello: "elasticsearch"
}, function (error) {
if (error) {
console.error('elasticsearch cluster is down!');
 } else {
console.log('All is well');
 }

https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/browser-builds.html

Build a Simple Blog with Search Capability using Elasticsearch

[106]

});

The results could be cached into localStorage by doing the following:

localStorage.setItem('results',JSON.stringify(results));

We'll populate the results with data we find from elasticsearch and then just check if the
same query was done earlier.

We also need to keep the data fresh. Let's hypothesize that it takes about 15 minutes before
a user gets bored and would refresh the page to try to see new information.

In the same manner, we check whether the search result have been displayed in the past:

var searches = localStorage.get('searches');
if(searches != mktime(date('H'), date('i')-15)) {
 //fetch again
varsearchParams = {
index: 'logdates',
body:
query: {
match: {
date: $('#search_date').value;

}
client.search();
} else {
 //output results from previous search;
prevResults[$("#search_date").val()];
}

Now, whenever we expire the search criteria, say after about 15 minutes, we will simply
clear the cache and put in the new search results that Elasticsearch finds.

Working with streams
Here, we will take advantage of PHP's Monolog library and then stream the data instead of
pushing complete strings. The nice thing about working with streams is that they can easily
pipe into Logstash and, in turn, store it into Elasticsearch as indexed data. Logstash also has
features for creating data streams and streaming the data.

We can directly input our data without even using Logstash, using something that is known
as streams. For more information on streams, refer to h t t p : / / p h p . n e t / m a n u a l / e n / b o o k . s t

r e a m . p h p.

http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php

Build a Simple Blog with Search Capability using Elasticsearch

[107]

Here, for example, is a way to push some data to Elasticsearch:
http://localhost/dev/streams/php_input.php:

curl -d "Hello World" -d "foo=bar&name=John"
http://localhost/dev/streams/php_input.php

In php_input, we can put the following code:

readfile('php://input')

We'll be getting Hello World&foo=bar&name=John, which means that PHP was able to
get the very first string as a stream using the PHP input stream.

To play around with PHP streams, let's create a stream using PHP manually. PHP
developers usually have some experience working with stream data already when working
with output buffering.

The idea with output buffering is to collect the stream until it's complete and then show it to
the user.

This is especially useful when the stream isn't finished yet and we need to wait for the
ending character for the data to be completely transferred.

We can push streams into Elasticsearch! This can be done using the Logstash input plugin
to handle streams. This is how PHP can output to a stream:

<?php
require 'vendor/autoload.php';
$client = new Elasticsearch\Client();
ob_start();
$log['body'] = array('hello' => 'world', 'message' => 'some test');
$log['index'] = 'test';
$log['type'] = 'log';
echo json_encode($log);
//flush output of echo into $data
$data = ob_get_flush();
$newData = json_decode($data); //turn back to array
$client->index($newData);

Build a Simple Blog with Search Capability using Elasticsearch

[108]

Storing and searching XML documents using
PHP
We can also work with XML documents and insert them into Elasticsearch. To do so, we
can transform the data into JSON and then push the JSON into Elasticsearch.

First, you can check out the following XML to JSON converter:

If you want to check that the XML has been converted correctly to JSON, check out theXML
TO JSON Converter tool at h t t p : / / c o d e b e a u t i f y . o r g / x m l t o j s o n; from there, you can
easily check out how to export an XML to JSON:

Using Elasticsearch to search a social network
database
In this section, we'll simply use our knowledge to apply it to an existing social network built
with PHP.

Let's pretend we have users who want to be able to search their social feed. Here's where
we build a full-blown auto-dropdown search system.

http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson
http://codebeautify.org/xmltojson

Build a Simple Blog with Search Capability using Elasticsearch

[109]

Every time the user posts, we need to be able to store all the data in Elasticsearch.

However, in our search queries, we will match search results to the actual word that the
user fetched. If it doesn't match the query in each, character-by-character, we won't display
it.

We first need to build the feed. The SQL schema will look as follows:

CREATE TABLE feed (
Id INT(11) PRIMARY KEY,
Post_title TEXT,
post_content TEXT,
post_topics TEXT,
post_time DATETIME,
post_type VARCHAR(255),
posted_by INT (11) DEFAULT '1'
) ;

Post_type would handle the type of post—photo, video, link, or just plain text.

So, if the user added a type of picture, it would be saved as an image type. And when a
person searches for a post, they can filter by the type.

Every time users save a new photo, or a new post, we will also store the data into
Elasticsearch, which will look as follows:

INSERT INTO feed (`post_title`, `post_content`, `post_time`, `post_type`)
VALUES ('some title', 'some content', '2015-03-20 00:00:00', 'image', 1);

Now we need to make an input form when the user inserts the preceding new posting.
We'll just build the one that can upload a photo with a title or just add text:

<h2>Post something</h2>

<form type="post" action="submit_status.php" enctype="multipart/form-data">
Title:<input name="title" type="text" />
Details: <input name="content" type="text">
Select photo:
<input type="file" name="fileToUpload" id="fileToUpload">
<input type="hidden" value="<?php echo $_SESSION['user_id'] ?>"
name="user_id">
<input name="submit" type="submit">

</form>

Build a Simple Blog with Search Capability using Elasticsearch

[110]

The submit_status.php script will have the following code to save into the database:

<?php
use Elasticsearch\ClientBuilder;

 require 'vendor/autoload.php';

$db = new mysqli(HOST, DB_USER, DB_PASSWORD, DATABASE);

 $client = ClientBuilder::create()->build();
if(isset($_POST['submit'])) {
 $contentType = (!empty($_FILES['fileToUpload'])) ? 'image' : '

$db->query("INSERT INTO feed (`post_title`, `post_content`, `post_time`,
`post_type`, `posted_by`)
VALUES ('". $_POST['title'] ."','" . $_POST['content'] . "','" . date('Y-m-
d H:i:s'). "','" . $contentType . "','" . $_POST['user_id']);

//save into elasticsearch
$params = [
 'index' => 'my_feed',
 'type' => 'posts',
 'body' => [
 'contenttype' => $contentType,
 'title' => $_POST['title'],
 'content' => $_POST['content'],
 'author' => $_POST['user_id']
]
];
 $client->index($params);
 }

 ?>

Displaying randomized search engine results
The preceding feed database table is the table that everyone will post to. We need to enable
randomly showing what's on the feed. We can insert posts into feeds instead of storing.

By searching from Elasticsearch and randomly rearranging the data, we can make our
searches more fun. In a way, this makes sure that people using our social network will be
able to see random posts in their feed.

Build a Simple Blog with Search Capability using Elasticsearch

[111]

To search from the posts, instead of doing a direct query to SQL, we will search the
Elasticsearch database for the data.

First, let's figure out how to insert the data into an Elasticsearch index called posts. With
Elasticsearch open, we simply do the following:

$ curl-XPUT 'http://localhost:9200/friends/'-d '{
"settings":{
"number_of_shards":3,
"number_of_replicas":2
}
}'

We will probably also want to search our friends, and if we have a ton of friends, they won't
all be on the feed. So, we just need another index to search called the friends index.

The following code, when run in the Linux command line, will allow us to create a new
friends index:

$ curl-XPUT 'http://localhost:9200/friends/'-d '{
"settings":{
"number_of_shards":3,
"number_of_replicas":2
}
}'

So, we can now store data about our friends using the friends index:

$ curl-XPUT 'http://localhost:9200/friends/posts/1'-d '{
"user":"kimchy",
"post_date":"2016-06-15T14:12:12",
"message":"fred the friend"
}'

We'll usually look for friends of friends and we'll, of course, show that to our user if there
are any friends with the search query.

Build a Simple Blog with Search Capability using Elasticsearch

[112]

Summary
In this chapter, we discussed how to create a blog system, experimented with Elasticsearch,
and were able to do the following:

Create a simple blog application and store data in MySQL
Install Logstash and Elasticsearch
Practice working with Elasticsearch using curl
Get data into Elasticsearch using the PHP Client
Chart information (hits) from Elasticsearch using Highcharts
Use the elasticsearch.js client to query Elasticsearch for information
Use Redis and localStorage in the browser to work with caching

5
Creating a RESTful Web

Service
The goal of this chapter is to implement a RESTful Web Service that can be used to manage
user profiles. Each user will have some basic contact information (such as a username, a
given name, and a family name), a password for authentication, and a profile image.

This service will be implemented using the Slim micro framework, a small and lightweight
framework that is available as an open-source library (MIT licensed) for PHP 5.5 and newer
(we'll be using PHP 7, of course). For persistence, a MongoDB database will be used. This
offers the perfect chance to explore PHP's MongoDB extension, which replaces the old
(similarly named, but completely different) Mongo extension that was removed with PHP
7.

In this chapter, we will cover the following:

The basics of RESTful Web Services, most importantly the common HTTP request
and response methods
Installing and using the Slim framework, and also the basics of the PSR-7
standard
Designing and implementing the actual example RESTful Web Service using the
Slim framework and MongoDB storage
How to work with PSR-7 streams and store large files in a MongoDB database
with GridFS

Creating a RESTful Web Service

[114]

RESTful basics
In this section, we will recapitulate the basics of RESTful Web Services. You will learn about
the basic architectural goals of REST Web Services and the most common protocol
semantics of the Hypertext Transfer Protocol (HTTP), which is commonly used to
implement such services.

REST architectures
The term Representational State Transfer was coined by Roy Fielding in 2000 and
describes an architectural style for distributed systems that is, in principle, independent of
any concrete communication protocol. In practice, most REST architectures are
implemented using the Hypertext Transfer Protocol – in short, HTTP.

The key component of each RESTful Web Service is the resource. Each resource should meet
the following requirements:

Addressability: Each resource must be identifiable by a Uniform Resource
Identifier (URI), which is standardized in RFC 3986. For instance, a user with the
username johndoe might have the URI
http://example.com/api/users/johndoe.
Statelessness: The participants' communication between each other is stateless;
this means that REST applications typically do not use user sessions. Instead,
each request needs to contain all information that the server will need to fulfill
the request.
Uniform interface: Each resource must be accessible by a set of standard
methods. When using HTTP as a transfer protocol, you will typically use the
HTTP methods for querying or modifying the state of resources. The next section
of this chapter contains a short overview of the most common HTTP standard
methods and response codes.
Decoupling of resources and representation: Each resource can have multiple
representations. For example, a REST service might serve both a JSON and an
XML representation of a user profile. Typically, the client specifies in which
format the server should respond, and the server will choose a representation
that best fits the requirements specified by the client. This process is
called Content Negotiation.

In this chapter, you will learn to implement all these architectural principles in a small
RESTful Web Service. You will implement several different resource types with different
representations and learn how to use different HTTP methods and response codes to query

http://example.com/api/users/johndoe

Creating a RESTful Web Service

[115]

and modify these resources. Additionally, you will learn how you can use advanced HTTP
features to your advantage (such as the rich set of cache-control headers).

Common HTTP methods and response codes
HTTP defines a set of standard methods (or verbs) that clients can use in requests, and status
codes that servers can use in responses to said requests. In REST architectures, the different
request methods are used to either query or modify the server-side state of the resource that
is identified by the request URI. These request methods and response status codes are
standardized in RFC 7231. Table 1 and Table 2 show an overview of the most common
request methods and status codes.

The request methods GET, HEAD, and OPTIONS are defined as safe. Servers should not
modify their own state when processing these kinds of requests. Furthermore, both the safe
methods and PUT and DELETE methods are defined as idempotent. Idempotency means that
repeated identical requests should have the same effect as a single request – for instance,
multiple DELETE requests to the /api/users/12345 URI should still result in that one
resource being deleted.

Table 1, Common HTTP request methods:

HTTP
method

Description

GET Used for querying the state of the resource identified by the URI. The server
responds with a representation of the queried resource.

HEAD Just like GET, except the server returns only the response headers and not the
actual resource representation.

POST POST requests can contain a resource representation in their request body. The
server should store this object as a new sub-resource of the resource identified
by the request URI.

PUT Just like POST, PUT requests also contain a resource representation in their
request body. The server should ensure that a resource with the given URI and
representation exists and should create one if necessary.

DELETE Deletes the resource with the specified URI.

OPTIONS Can be used by clients to query which operations are allowed for a given
resource.

Creating a RESTful Web Service

[116]

Table 2: Common HTTP response status codes:

Status code Description

200 OK The request was successfully processed; the response message
typically contains a representation of the requested resource.

201 Created Like 200 OK, but in addition, explicitly states that a new resource
was created by the request.

202 Accepted The request was accepted for processing, but has not yet been
processed. This is useful when a server processes time-consuming
requests asynchronously.

400 Bad Request The server was unable to interpret the client's request. This might
be the case when a request contains invalid JSON or XML data.

401 Unauthorized The client needs to authenticate before accessing this resource. The
response can contain more information on the required
authentication and the request can be repeated with appropriate
credentials.

403 Forbidden Can be used when the client was authenticated, but is not
authorized to access a given resource.

404 Not Found Used when the resource specified by the URI does not exist.

405 Method Not
Allowed

The request method is not allowed for the specified resource.

500 Internal Server
Error

An error occurred on the server while processing the request.

First steps with the Slim framework
In this section, you will take you first steps with the Slim framework. For this, you will first
use Composer to install the framework and then build a small sample application that will
show you the basic principles of the framework.

Installing Slim
The Slim framework can be easily installed using Composer. It requires PHP in at least
version 5.5, but also works well with PHP 7. Start by initializing a new project with
Composer:

Creating a RESTful Web Service

[117]

 $ composer init .

This will create a new project-level composer.json file for our project. Now you can add
the slim/slim package as a dependency:

 $ composer require slim/slim

A small sample application
You can now start using the Slim framework in your PHP application. For this, create an
index.php file in your web server's document root with the following content:

<?php
use \Slim\App;
use \Slim\Http\Request;
use \Slim\Http\Response;

require "vendor/autoload.php";

$app = new App();
$app->get("/", function(Request $req, Response $res): Response {
 return $res->withJson(["message" => "Hello World!"]);
});
$app->run();

Let's have a look at how the Slim framework works here. The central object here is the $app
variable, an instance of the Slim\App class. You can then use this application instance to
register routes. Each route is a mapping of an HTTP request path to a simple callback
function that handles an HTTP request. These handler functions need to accept a request
and a response object and need to return a new response object.

Before you can test this application, you may need to configure your web server to rewrite
all requests to your index.php file. If you are using Apache as a web server, this can be
done with a simple .htaccess file in your document root:

RewriteEngine on
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^([^?]*)$ /index.php [NC,L,QSA]

This configuration will rewrite requests for all URLs to your index.php file.

Creating a RESTful Web Service

[118]

You can test your (admittedly still very simple) API with your browser. If you prefer the
command line, I can recommend theHTTPie command-line tool. HTTPie is Python-based
and you can easily install it using your operating system's package manager or Python's
own package manager, pip:

 apt-get install httpie
 # Alternatively:
 pip install --upgrade httpie

You can then use HTTPie on the command-line to perform RESTful HTTP requests easily
and also get syntax-highlighted output. See the following figure for an example output of
HTTPie when used with the example application:

Example output of HTTPie with the Slim example application

Accepting URL parameters
Slim routes can also contain parameters in their path. In your index.php, add the
following route before the last $app->run() statement:

$app->get(
 '/users/{username}',
 function(Request $req, Response $res, array $args): Response {
 return $res->withJson([
 'message' => 'Hello ' . $args['username'
]);
 }
);

Creating a RESTful Web Service

[119]

As you can see, any route specification can contain arbitrary parameters in curly brackets.
The route handler function can then accept a third parameter that contains all path
parameters from the URL as an associative array (such as the username parameter in the
preceding example).

Accepting HTTP requests with a message body
So far, you have only worked with HTTP GET requests. Of course, the Slim framework also
supports any other kind of request method that is defined by the HTTP protocol. One
interesting difference between a GET and – for example – a POST request, however, is that
some requests (such as POST, PUT, and others) can contain a request body.

The request body consists of structured data that is serialized as a string according to some
pre-defined encoding. When sending a request to a server, the client uses the Content-Type
HTTP header to tell the server which encoding is used for the request body. Common
encodings include the following:

application/x-www-form-urlencoded is typically used by browsers when
submitting an HTML form
application/json for JSON encoding
application/xml or text/xml for XML encoding

Luckily, the Slim framework supports all these encodings and determines the correct
method to parse a request body automatically. You can test this with the following simple
route handler:

$app->post('/users', function(Request $req, Response $res): Response {
 $body = $req->getParsedBody();
 return $response->withJson([
 'message' => 'creating user ' . $body['username']
]);
});

Note the use of the getParsedBody() method that is offered by the Request class. This
method will use the request body and automatically use the correct decoding method
depending on the Content-Type header that was present in the request.

You can now use any of the preceding content encodings presented to POST data to this
route. This can be easily tested using the following curl commands:

 $ curl -d '&username=martin&firstname=Martin&lastname=Helmich'
http://localhost/users
 $ curl -d

Creating a RESTful Web Service

[120]

'{"username":"martin","firstname":"Martin","lastname":"Helmich"}' -
H'Content-Type: application/json' http://localhost/users
 $ curl -d
'<user><username>martin</username><firstname>Martin</firstname><lastname>He
lmich</lastname></user>' -H'Content-Type: application/xml'

All of these requests will yield the same response from your Slim application, as they're
containing the exact same data, just using a different content encoding.

The PSR-7 standard
One of the Slim framework's main features is the PSR-7 compliance. PSR-7 is a PHP
Standard Recommendation (PSR) defined by the PHP Framework Interoperability Group
(FIG) and describes a set of standard interfaces that can be implemented by HTTP servers
and client libraries written in PHP to increase operability between those products (or in
plain English, to enable these libraries to be used with each other).

PSR-7 defines a set of PHP interfaces that the framework can implement. The following
figure illustrates the interfaces that are defined by the PSR-7 standard. You can even install
these interfaces in your project by acquiring the psr/http-messages package using
Composer:

The interfaces defined by the PSR-7 standard

Creating a RESTful Web Service

[121]

The Slim\Http\Request and Slim\Http\Response classes that you have worked with in
the previous examples already implement these PSR-7 interfaces (the Slim\Http\Request
class implements the ServerRequestInterface and Slim\Http\Response
implements ResponseInterface).

These standardized interfaces become especially useful when you want to use two different
HTTP libraries together. As an interesting example, consider a PSR-7 compliant HTTP
server framework like Slim used together with a PSR-7 compliant client library, for example
Guzzle (use the package key guzzlehttp/guzzle if you want to install it with Composer).
You can use these two libraries and easily wire them together for a dead-simple reverse
proxy:

$httpClient = new \GuzzleHttp\Client();

$app = new \Slim\App();
$app->any('{path:.*}',
 function(
 ServerRequestInterface $req,
 ResponseInterface $response
) use ($client): ResponseInterface {
 return $client->send(
 $request->withUri(
 $request->getUrl()->withHost('your-upstream-server.local')
)
);
 }
);

What exactly happens here? The Slim request handler gets an implementation of the
ServerRequestInterface passed as a first parameter (remember; this interface inherits
the regular RequestInterface) and needs to return a ResponseInterface
implementation. Conveniently, the send() method of GuzzleHttp\Client also accepts a
RequestInterface and returns a ResponseInterface. Because of this, you can simply
re-use the request object that you received in your handler and pipe it into the Guzzle client
and also re-use the response object returned by the Guzzle client. Guzzle's send() method
actually returns an instance of the GuzzleHttp\Psr7\Response class (and not
Slim\Http\Response). That is completely acceptable, as both of these classes implement
the same interface. In addition, the preceding example uses the method defined by the
PSR-7 interfaces to modify the host part of the request URI.

Creating a RESTful Web Service

[122]

Immutable Objects
You may have wondered about the withUri and withHost methods in
the preceding code example. Why do the PSR-7 interfaces not imply
declare methods such as setUri or setHost? The answer is that all PSR-7
implementations are designed to be immutable. This means that objects
are not intended to be modified after they are created. All the methods
starting with with (and PSR-7 actually defines a lot of them) are designed
to return a copy of the original object with one modified property.
So basically, instead of modifying objects with setter methods, you'll be
passing around clones of an original object:
// using mutable objects (not supported by PSR-7)
$uri->setHost('foobar.com');
// using immutable objects
$uri = $uri->withHOst('foobar.com');

Middleware
Middleware is one of the most important features of the Slim framework and similar
libraries. It allows you to modify an HTTP request before it is passed to the actual request
handler, modify an HTTP response after being returned from the request handler, or bypass
a request handler entirely. There are quite a number of possible use cases for this:

You can handle authentication and authorization in middleware. Authentication
encompasses identifying a user from given request parameters (maybe the HTTP
request contains an authorization header or a cookie with a session ID) and
authorization involves checking if the authenticated user is actually allowed to
access a particular resource.
You can implement a rate limiting for your API by counting requests by a
particular user and returning with an error response code early before hitting the
actual request handler.
In general, all kinds of operations that enrich a request with additional data
before being processed by the request handler.

Middleware is also chainable. The framework can manage any number of middleware
components, and an incoming request will be piped through all registered middleware.
Each item of middleware must be callable as a function and accept a RequestInterface, a
ResponseInterface, and a function that represents the next instance of middleware (or
the request handler itself).

Creating a RESTful Web Service

[123]

The following code example shows middleware that adds an (admittedly extremely simple)
HTTP authentication to an application:

$app->add(function (Request $req, Response $res, callable $next): Response
{
 $auth = $req->getHeader('Authorization');
 if (!$auth) {
 return $res->withStatus(401);
 }

 if (substr($auth, 0, 6) !== 'Basic ' ||
 base64_decode(substr($auth, 6)) !== 'admin:secret') {
 return $res->withStatus(401);
 }

 return $next($req, $res);
}

$app->get('/users/{username}', function(Request $req, Response $res):
Response {
 // Handle the request
});

$app->get('/users/{username}', function(Request $req, Response $res):
Response {
 // Handle the request
});

The $app->add() function can be used to register middleware that will be invoked on any
request. As you can see, the middleware function itself looks similar to a regular request
handler, with the only difference being the third parameter, $next. Each request can be
passed through a potentially indeterminate amount of middleware. The $next function
gives a component of middleware control over whether a request should be passed to the
next component of middleware in the chain (or the registered request handler itself). It is
important to note, however, that the middleware does not have to call the $next function at
any time. In the preceding example, an unauthorized HTTP request will never even get
through to the actual request handler, because the middleware that handles authentication
does not invoke $next at all when there is no valid authentication.

This is where PSR-7 comes into play. Because of PSR-7, you can develop and distribute
middleware and they will work with all frameworks and libraries that also implement
PSR-7. This guarantees interoperability between libraries and also ensures that there is a
shared ecosystem of libraries that can be widely re-used. A simple Internet search for PSR-7
middlewares yields a plethora of libraries that you can use nearly out-of-the box.

Creating a RESTful Web Service

[124]

Implementing the REST service
In this chapter, you will begin implementing the actual user profile service. As a first step,
we will design the RESTful API of the service and then continue by implementing the
designed API endpoints.

Designing the service
Now it is time to get to the actual task that we want to implement in this chapter. In this
chapter, you will develop a RESTful Web Service using the Slim framework and MongoDB
to access and read user profiles. In short, one of the first steps that you should take when
designing a REST Web Service is to think about the resources that you want to offer to your
users.

Keeping RESTful
Be sure to design around resources whose state you modify with HTTP
verbs such as POST, PUT, and DELETE. I've often seen HTTP APIs being
developed around procedures, not resources, that end up in URLs such
as POST /users/create or POST /users/update that resemble more of
an RPC-based API design.

The table that follows shows the resources and operations that we'll be working with in this
chapter. There are a few central resources:

/profiles is a collection of all known profiles. It is read-only – meaning that
only GET (and HEAD) operations will be allowed – and contains a collection of all
user profiles. Users of your API should be able to filter the set by a set of
constraints or limit the returned collection to a given length. Both filtering and
limitations can be implemented as optional query parameters:

 GET /profiles?firstName=Martin&limit=10

/profiles/{username} is a resource that represents a single user. A GET
request on this resource will return this user's profile, while a PUT request will
create the profile or update it if it already exists and a DELETE request will delete
the profile.
/profiles/{username}/image represents a user's profile image. It can be set
using a PUT operation, read with a GET operation, and removed with a DELETE
operation.

Creating a RESTful Web Service

[125]

Route Purpose

GET /profiles Lists all users, optionally filtered by search
parameters

GET /profiles/{username} Returns a single user

PUT /profiles/{username} Creates a new user with a given username or
updates an already existing one with that
username

DELETE /profiles/{username} Deletes a user

PUT /profiles/{username}/image Stores a new profile image for a user

GET /profiles/{username}/image Retrieves the user's profile image

DELETE /profiles/{username}/image Deletes a profile image

One question that might arise is why this example uses a PUT request to create new profiles,
and not POST. I've often seen POST being associated with creating objects and PUT with
updating objects – this is an incorrect interpretation of the HTTP standards. Note that we're
using the username as part of the profile's URI. This means that when creating a profile for
a new user with a given user name, you already know which URI the resource will have
after it's created.

And that is exactly what the PUT resource is for – ensuring that a resource with a given
representation exists with the given URI. The advantage is that you can rely on PUT
requests being idempotent. This means that a dozen identical PUT requests to
/profiles/martin-helmich will not do any harm, while a dozen identical POST requests
to /profiles/ might very well create a dozen different user profiles.

Bootstrapping the project
Before beginning to implement your REST service, you will probably need to take care of
some system requirements. For the sake of simplicity, we'll be working with a set of linked
Docker containers in this example. Start by creating a new container running a MongoDB
instance using the official MongoDB image:

$ docker run --name profiles-db -d mongodb

Creating a RESTful Web Service

[126]

For the application container, you can use the official PHP image. However, as the
MongoDB PHP driver is not part of the standard PHP distribution, you will need to install
it via PECL. For this, you can create a custom Dockerfile to build your application
container:

FROM php:7-apache

RUN apt-get update && \
 apt-get install -y libssl-dev && \
 pecl install mongodb && \
 docker-php-ext-enable mongodb
RUN a2enmod rewrite

Next, build your container and run it. Link it to the already running MongoDB container:

 $ docker build -t packt-chp5 .
 $ docker run --name profiles-web --link profiles-db:db \
 -v $PWD:/var/www/html -p 80:80 packt-chp5

This will create a new Apache container running PHP 7 with the current working directory
mapped to the web server's document root. The -p 80:80 flag allows the Apache container
to be accessed using http://localhost from your browser or a command-line client.

Just like in the first examples in this chapter, we will be using Composer to manage the
project's dependencies and for automatic class loading. You can start with the following
composer.json file:

{
 "name": "packt-php7/chp5-rest-example",
 "type": "project",
 "authors": [{
 "name": "Martin Helmich",
 "email": "php7-book@martin-helmich.de"
 }],
 "require": {
 "php": ">=7.0",
 "slim/slim": "^3.1",
 "mongodb/mongodb": "^1.0",
 "phpunit/phpunit": "^5.1",
 "ext-mongodb": "*"
 },
 "autoload": {
 "psr-4": {
 "Packt\\Chp5": "src/"
 }
 }
}

Creating a RESTful Web Service

[127]

After creating the composer.json file, install the project's dependencies with composer
install. If you are not running Composer in an environment that matches all specified
constraints, you can add the --ignore-platform-reqs flag to the Composer command.

In this example, we will be using Composer's PSR-4 autoloader with Packt\Chp5 as a base
namespace and all classes located in the src/ directory. That means that a class such
as Packt\Chp5\Foo\Bar needs to be defined in the file src/Foo/Bar.php.

Building the persistence layer with MongoDB
The first step we'll take in this example is to build an object-oriented model of the
application's domain – the user profile. In the first step, this will not be overly complicated.
Let's start by defining a Profile class with the following properties:

A username that uniquely identifies the user and can serve as a login username
A given name and a family name
A list of interests and hobbies that the user cares about
The user's birthday
The hash value of the user's password, which will come in handy later when you
want users to authenticate before editing their own profile (and keeping them
from editing other people's profiles)

This can be implemented as a simple PHP class. Note that the class is currently completely
immutable, as its properties can only be set using the constructor. Also, this class does not
contain any kind of persistence logic (meaning getting data from the database or putting it
back). Following Separation of Concerns, modeling data and persisting it from and into a
database are two different concerns that should be handled in different classes.

declare(strict_types = 1);
namespace Packt\Chp5\Model;

class Profile
{
 private $username;
 private $givenName;
 private $familyName;
 private $passwordHash;
 private $interests;
 private $birthday;

 public function __construct(
 string $username,

Creating a RESTful Web Service

[128]

 string $givenName,
 string $familyName,
 string $passwordHash,
 array $interests = [],
 DateTime $birthday = null
) {
 $this->username = $username;
 $this->givenName = $givenName;
 $this->familyName = $familyName;
 $this->passwordHash = $passwordHash;
 $this->interests = $interests;
 $this->birthday = $birthday;
 }

 // getter methods omitted for brevity
}

Now you can model user profiles within your application – but you cannot do anything
with them yet. Our first goal will be to store instances of the Profile class in the MongoDB
database backend. This will be done in the Packt\Chp5\Service\ProfileService class:

declare(strict_types = 1);
namespace Packt\Chp5\Service;

use MongoDB\Collection;
use Packt\Chp5\Model\Profile;

class ProfileService
{
 private $profileCollection;

 public function __construct(Collection $profileCollection)
 {
 $this->profileCollection = $profileCollection;
 }
}

The ProfileService gets an instance of the MongoDB\Collection class passed as a
dependency into its constructor. This class is provided by the mongodb/mongodb Composer
package and models one single MongoDB collection (although not exactly true, a collection
is MongoDB's equivalent to a MySQL table). Again, we follow Separation of Concerns:
establishing the connection to the database is not the ProfileService's concern and will
be handled at a different place.

Creating a RESTful Web Service

[129]

Let's start by implementing a method in this service that can add new user profiles to the
database. A fitting name for such a method is insertProfile:

 public function insertProfile(Profile $profile): Profile
 {
 $record = $this->profileToRecord($profile);
 $this->profileCollection->insertOne($profile);
 return $profile;
 }

 private function profileToRecord(Profile $profile): array
 {
 return [
 'username' => $profile->getUsername(),
 'passwordHash' => $profile->getPasswordHash(),
 'familyName' => $profile->getFamilyName(),
 'givenName' => $profile->getGivenName(),
 'interests' => $profile->getInterests(),
 'birthday' => $profile->getBirthDay()->format('Y-m-d')
];
 }
}

Note that this code example contains a private method, profileToRecord(), that converts
an instance of the Profile class to a plain PHP array that will be stored as a document in
the collection. This code was extracted into its own method, because it will be useful to have
it as a re-usable function later. The actual insertion is performed by the collection's
insertOne method, which takes a simple PHP array as a parameter.

As the next step, let's continue by extending the profile service with another method,
updateProfile, that can – you guessed it – update existing profiles:

 public function updateProfile(Profile $profile): Profile
 {
 $record = $this->profileToRecord($profile);
 $this->profileCollection->findOneAndUpdate(
 ['username' => $profile->getUsername()],
 ['$set' => $record]
);
 return $profile;
 }

The first parameter passed to the findOneAndUpdate method is a MongoDB query. It
contains a set of constraints that a document should match (in this case, the document's
username property being equal to whatever value $profile->getUsername() returns).

Creating a RESTful Web Service

[130]

Just like SQL queries, these can get arbitrarily complex. For example, the following query
will match all users whose given name is Martin and are born after January 1st, 1980 and
like either open source software or science fiction literature. You can find a full reference of
MongoDB query selection operators at h t t p s : / / d o c s . m o n g o d b . c o m / m a n u a l / r e f e r e n c e / o p

e r a t o r / q u e r y /.

[
 'givenName' => 'Martin',
 'birthday' => [
 '$gte' => '1980-01-01'
],
 'interests' => [
 '$elemMatch' => [
 'Open Source',
 'Science Fiction'
]
]

The second parameter to findOneAndUpdate() contains a set of update operations which
will be applied to the first document found that matches the given query. In this example,
the $set operator contains an array of property values that will be updated on matched
documents. Just like queries, these update statements can get more complex. The following
will update all matched users' given names to Max and add music to their list of interests:

[
 '$set' => [
 'givenName' => 'Max',
],
 '$addToSet' => [
 'interests' => ['Music']
]
]

Using a simple test script, you can now already test this profile service. For this, you will
need to establish a connection to your MongoDB database. If you used the Docker
commands previously, the hostname of your MongoDB server will simply be db:

declare(strict_types = 1);
$manager = new \MongoDB\Driver\Manager('mongodb://db:27017');
$collection = new \MongoDB\Collection($manager, 'database-name',
'profiles');

$profileService = new \Packt\Chp5\Service\ProfileService($collection);
$profileService->insertProfile(new \Packt\Chp5\Model\Profile(
 'jdoe',
 'John',

https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/

Creating a RESTful Web Service

[131]

 'Doe',
 password_hash('secret', PASSWORD_BCRYPT),
 ['Open Source', 'Science Fiction', 'Death Metal'],
 new \DateTime('1970-01-01')
));

Adding and updating user profiles is nice, but the profile service does not yet support
loading those profiles back from the database. For this, you can extend your
ProfileService with a few more methods. Start with a hasProfile method that simply
checks if a profile for a given username exists or not:

public function hasProfile(string $username): bool
{
 return $this->profileCollection->count(['username' => $username]) > 0;
}

The hasProfile method simply checks if a profile for a given username is stored in the
database. For this, the collection's count method is used. This method accepts a MongoDB
query object and will return the count of all documents matching this constraint (in this
case, the number of all documents with a given username). The hasProfile method will
return true when a profile with the given username already exists.

Continue by implementing the getProfile method, which loads a user profile from the
database and returns a respective instance of the Profile class:

public function getProfile(string $username): Profile
{
 $record = $this->profileCollection->findOne(['username' => $username]);
 if ($record) {
 return $this->recordToProfile($record);
 }
 throw new UserNotFoundException($username);
}

private function recordToProfile(BSONDocument $record): Profile
{
 return new Profile(
 $record['username'],
 $record['givenName'],
 $record['familyName'],
 $record['passwordHash'],
 $record['interests']->getArrayCopy(),
 new \DateTime($record['birthday']);
);
}

Creating a RESTful Web Service

[132]

The getProfile method uses the collection's findOne method (which incidentally accepts
the same query object), which returns the first document that matches the constraint (or
null, when no document can be found). When no profile with the given username can be
found, Packt\Chp5\Exception\UserNotFoundException will be thrown. The
implementation of this class is left as an exercise for the reader. The document – if found – is
then passed into the private recordToProfile method, which inverts the
profileToRecord method that you've already implemented earlier. Note that all
MongoDB query method do not return plain arrays as documents, but always returns
instances of the MongoDB\Model\BSONDocument class. You can use these exactly as you
would use a regular array, but can trip over it when type-hinting function arguments or
return values.

Adding and retrieving users
As you have now successfully implemented the persistence logic of the profile REST
service, you can now start implementing the actual REST Web Service.

In the previous examples, we have used simple callback functions as request handlers for
the Slim framework:

$app->get('/users', function(Request $req, Response $res): Response {
 return $response->withJson(['foo' => 'bar']);
});

This is perfectly fine for getting started quickly, but will get difficult to maintain as your
application grows. In order to structure your application in a more scalable way, you can
exploit the fact that a Slim request handler does not have to be an anonymous function, but
can in fact be anything that is callable. In PHP, you can also make objects callable by
implementing the __invoke method. You can use this to implement a request handler that
can be a stateful class with its own properties.

Before implementing the request handler, though, let us take a look at the web service's
responses. As we have chosen JSON as our primary representation format, you will
frequently need to convert instances of the Profile class to a JSON object – and of course
also the other way around. In order to keep this conversion logic reusable, it is
recommended that this functionality be implemented in a separate unit. For this, you can
implement a ProfileJsonMapping trait as, shown in the following example:

namespace Packt\Chp5\Mapper;

trait ProfileJsonMapping
{

Creating a RESTful Web Service

[133]

 private function profileToJson(Profile $profile): array
 {
 return [
 'username' => $profile->getUsername(),
 'givenName' => $profile->getGivenName(),
 'familyName' => $profile->getFamilyName(),
 'interests' => $profile->getInterests(),
 'birthday' => $profile->getBirthday()->format('Y-m-d')
];
 }

 private function profileFromJson(string $username, array $json):
Profile
 {
 return new Profile(
 $username,
 $json['givenName'],
 $json['familyName'],
 $json['passwordHash'] ?? password_hash($json['password']),
 $json['interests'] ?? [],
 new \DateTime($json['birthday'])
);
 }
}

With the representation logic taken care of, you can now continue by implementing the
route for getting a single user profile. In this example, we will implement this route in the
Packt\Chp5\Route\ShowUserRoute class and use the ProfileJsonMapping trait shown
previously:

namespace Packt\Chp5\Route;
// imports omitted for brevity

class ShowProfileRoute
{
 use ProfileJsonMapping;
 private $profileService;

 public function __construct(ProfileService $profileService)
 {
 $this->profileService = $profileService;
 }

 public function __invoke(Request $req, Response $res, array $args):
Response
 {
 $username = $args['username'];
 if ($this->profileService->hasProfile($username)) {

Creating a RESTful Web Service

[134]

 $profile = $this->profileService->getProfile($username);
 return $res->withJson($this->profileToJson($profile));
 } else {
 return $res
 ->withStatus(404)
 ->withJson(['msg' => 'the user ' . $username . ' does not
exist']);
 }
 }
}

As you can see, the __invoke method in this class has the same signature as the callback
request handlers that you've seen in the previous examples. Also, this route class uses the
ProfileService that you have implemented in the previous section. The actual handler
first checks if a profile exists with a given username and returns a 404 Not Found status
code when the requested profile does not exist. Otherwise, the Profile instance will be
converted to a plain array and returned as a JSON string.

You can now initialize your Slim application in your index.php as follows:

use MongoDB\Driver\Manager;
use MongoDB\Collection;
use Packt\Chp5\Service\ProfileService;
use Packt\Chp5\Route\ShowProfileRoute;
use Slim\App;

$manager = new Manager('mongodb://db:27017');
$collection = new Collection($manager, 'database-name', 'profiles');
$profileService = new ProfileService($collection);

$app = new App();
$app->get('/profiles/{username}', new
ShowProfileRoute($profileService));
$app->run();

If your database still contains some test data from the previous section, you can now
already test this API, for example, by using HTTPie.

Creating a RESTful Web Service

[135]

Using the REST API to access user profiles

For creating new user profiles (and updating existing ones), you can now create a new
request handler class. As a PUT request to /profiles/{username} will either create a new
profile or update an already existing one, the new request handler will need to do both:

namespace Packt\Chp5\Route;
// Imports omitted for brevity

class PutProfileRoute
{
 use ProfileJsonMapping;
 private $profileService;

 public function __construct(ProfileService $profileService)
 {
 $this->profileService = $profileService;
 }

 public function __invoke(Request $req, Response $res, array $args):
Response
 {
 $username = $args['username'];
 $profileJson = $req->getParsedBody();
 $alreadyExists = $this->profileService->hasProfile($username);

Creating a RESTful Web Service

[136]

 $profile = $this->profileFromJson($username, $profileJson);
 if ($alreadyExists) {
 $profile = $this->profileService->updateProfile($profile);
 return $res->withJson($this->profileToJson($profile));
 } else {
 $profile = $this->profileService->insertProfile($profile);
 return
$res->withJson($this->profileToJson($profile))->withStatus(201);
 }
 }
}

In this example, we are using the Request class' getParsedBody method to retrieve the
parsed message body. Fortunately, this method is intelligent enough to look at the request's
Content-Type header and automatically choose an appropriate parsing method (in the
case of an application/json request, the json_decode method will be used to parse the
request body).

After retrieving the parsed message body, the profileFromJson method defined in the
ProfileJsonMapping trait is used to create an actual instance of the Profile class from
this body. Depending on whether a profile with this username already exists, we can then
insert or update the user profile using the methods implemented in the ProfileService
class. Note that depending on whether a new profile is created or an existing one is
updated, a different HTTP status code is returned (201 Created when a new profile was
created, or 200 OK otherwise).

What about validation?
You will note that currently, you can pass literally anything as a body
parameter and the request handler will try to save it as a user profile, even
when necessary properties are missing or the body does not contain valid
JSON. PHP 7's new type safety features will give you some safety, as –
thanks to strict typing, which is enabled with
declare(strict_types=1) – they will simply throw a TypeError
when some fields are missing in the input body. A more thorough
implementation of input validation will be looked at in the Validating input
section:

// As both parameters have a "string" type hint, strict typing will
// cause PHP to throw a TypeError when one of the two parameters should
// be null
$profile = new Profile(
 $jsonObject['familyName'],
 $jsonObject['givenName']
);

Creating a RESTful Web Service

[137]

You can now connect this class with a new route in your index.php:

$app = new App();
$app->get('/profiles/{username}', new
ShowProfileRoute($profileService));
$app->put('/profiles/{username}', new
PutProfileRoute($profileService));
$app->run();

Afterwards, you can try to create a new user profile using HTTPie:

$ http PUT http://localhost/profiles/jdoe givenName=John familyName=Doe \
password=secret birthday=1970-01-01

You can also try to update the created profile by simply repeating the same PUT request
with a different set of parameters. The HTTP response code (201 Created or 200 OK)
allows you to determine if a new profile was created or an existing one was updated.

Listing and searching users
The current state of your API allows users to read, create, and update specific user profiles.
However, the web service is still missing functionality for searching the profile collection or
listing all known user profiles. For listing profiles, you can extend the ProfileService
class with a new function, getProfiles:

namespace Packt\Chp5\Service\ProfileService;
// ...

class ProfileService
{
 // ...

 public function getProfiles(array $filter = []): Traversable
 {
 $records = $this->profileCollection->find($filter);
 foreach ($records as $record) {
 yield $this->recordToProfile($record);
 }
 }
}

Creating a RESTful Web Service

[138]

In case you are not familiar with this syntax: the previous function is a generator function.
The yield statement will cause the function to return an instance of the Generator class,
which itself implements the Traversable interface (meaning that you can iterate over it
using a foreach loop). This construct is particularly handy when dealing with large data
sets. As the find function itself also returns a Traversable, you can stream the matching
profile documents from the database, lazily map them to user objects, and pass the data
stream into your request handler, without the need to put the entire collection of objects
into memory.

For comparison, consider the following implementation, which works with plain arrays
instead of generators. You will notice that, due to usage of the ArrayObject class, even the
method's interface stays the same (returning a Traversable). However, this
implementation stores a list of all found profile instances within the ArrayObject instance,
whereas the previous implementation only handled one object at a time:

public function getProfiles(array $filter = []): Traversable
{
 $records = $this->profileCollection->find($filter);
 $profiles = new ArrayObject();

 foreach ($records as $record) {
 $profiles->append($this->recordToProfile($record));
 }

 return $profiles;
}

As the MongoDB API directly accepts well-structured query objects for matching
documents instead of a custom text-based language (yes, I'm looking at you, SQL), you will
not have to worry about injection attacks that traditional SQL-based systems are (not
always, but often) vulnerable to. This allows our getProfiles function to accept a query
object in the $filter argument that we simply pipe into the find method.

In the next step, you can extend the getProfiles function by adding new arguments for
sorting the result set:

public function getProfiles(
 array $filter = [],
 string $sorting = 'username',
 bool $sortAscending = true
): Traversable {
 $records = $this->profileCollection->find($filter, ['sort' => [
 $sorting => $sortAscending ? 1 : -1
]]);

Creating a RESTful Web Service

[139]

 // ...
}

Using this new function, it is easy to implement a new class,
Packt\Chp5\Route\ListProfileRoute, that you can use to query the entire user
collection:

namespace Packt\Chp5\Route;

class ListProfileRoute
{
 use ProfileJsonMapping;

 private $profileService;

 public function __construct(ProfileService $profileService)
 {
 $this->profileService = $profileService;
 }

 public function __invoke(Request $req, Response $res): Response
 {
 $params = $req->getQueryParams();

 $sort = $params['sort'] ?? 'username';
 $asc = !($params['desc'] ?? false);
 $profiles = $this->profileService->getProfiles($params, $sort,
$asc);
 $profilesJson = [];

 foreach ($profiles as $profile) {
 $profilesJson[] = $this->profileToJson($profile);
 }

 return $response->withJson($profilesJson);
 }
}

After that, you can register the new request handler at your Slim application in the
index.php file:

$app = new App();
$app->get('/profiles', new ListProfileRoute($profileService));
$app->get('/profiles/{username}', new ShowProfileRoute($profileService));
$app->put('/profiles/{username}', new PutProfileRoute($profileService));
$app->run();

Creating a RESTful Web Service

[140]

Deleting profiles
Deleting user profiles should be an easy task by now. First, you'll need a new method in
your ProfileService class:

class ProfileService
{
 // ...

 public function deleteProfile(string $username)
 {
 $this->profileCollection->findOneAndDelete(['username' =>
 $username]);
 }
}

The MongoDB collection's findOneAndDelete method does exactly what it promises. The
first parameter to this function is a MongoDB query object as you have already used it in
the previous sections. The first document matched by this query object will be deleted from
the collection.

After that, you can implement a new request handler class that uses the profile service to
delete a profile, if present. When trying to delete a non-existing user, the request handler
will respond with the correct status code, 404 Not Found:

namespace Packt\Chp5\Route;
// Imports omitted...

class DeleteProfileRoute
{

 /** @var ProfileService */
 private $profileService;

 public function __construct(ProfileService $profileService)
 {
 $this->profileService = $profileService;
 }

 public function __invoke(Request $req, Response $res, array $args):
Response
 {
 $username = $args['username'];
 if ($this->profileService->hasProfile($username)) {
 $this->profileService->deleteProfile($username);
 return $res->withStatus(204);
 } else {

Creating a RESTful Web Service

[141]

 return $res
 ->withStatus(404)
 ->withJson(['msg' => 'user "' . $username . '" does not
exist']);
 }
 }
}

You will notice that there is now some duplicate code in our example codebase.
Both ShowProfileRoute and DeleteProfileRoute need to check if a user profile with a
given username exists, and if not, return a 404 Not Found response.

This is a good use case for using middleware. As already stated in the previous section,
middleware can either send a response to an HTTP request by itself, or pass the request to
the next middleware component or the actual request handler. This allows you to
implement middleware that takes the username from the route parameters, check if a
profile exists for that user, and return an error response if that user does not exist. If that
user does in fact exist, the request can be passed to the request handler:

namespace Packt\Chp5\Middleware

class ProfileMiddleware
{
 private $profileService;

 public function __construct(ProfileService $profileService)
 {
 $this->profileService = $profileService;
 }

 public function __invoke(Request $req, Response $res, callable $next):
Response
 {
 $username =
$request->getAttribute('route')->getArgument('username');
 if ($this->profileService->hasProfile($username)) {
 $profile = $this->profileService->getProfile($username);
 return $next($req->withAttribute('profile', $profile));
 } else {
 return $res
 ->withStatus(404)
 ->withJson(['msg' => 'user "' . $username . '" does not
exist');
 }
 }
}

Creating a RESTful Web Service

[142]

All PSR-7 requests can have arbitrary attributes that can be set with
$req->withAttribute($name, $value) and retrieved with
$req->getAttribute($name). This allows middleware to pass any kind of value to the
actual request handler – this is exactly what ProfileMiddleware does by attaching the
profile attribute to the request. The actual request handler can then retrieve the user
profile, which has already been loaded, by simply calling
$req->getAttribute('profile').

Middleware is registered in a similar fashion to regular request handlers. Each time you
register a new request handler with $app->get(...) or $app->post(...), this method
will return an instance of the route configuration to which you can assign different
middleware. In your index.php file, you can register your middleware like this:

$profileMiddleware = new ProfileMiddleware($profileService);

$app = new App();
$app->get('/profiles', new ListProfileRoute($profileService));
$app->get('/profiles/{username}', new ShowProfileRoute($profileService))
 ->add($profileMiddleware);
$app->delete('/profiles/{username}', new
DeleteProfileRoute($profileService))
 ->add($profileMiddleware);
$app->put('/profiles/{username}', new PutProfileRoute($profileService));
$app->run();

After registering the middleware for the GET /profiles/{username} and DELETE
/profiles{username} route, you can modify the respective route handlers to simply use
the profile request attribute and remove the error checking:

class ShowProfileRoute
{
 // ...

 public function __invoke(Request $req, Response $res): Response
 {
 $profile = $req->getAttribute('profile');
 return $res->withJson($this->profileToJson($profile));
 }
}

The same goes for the DeleteProfileRoute class:

class DeleteProfileRoute
{
 // ...

Creating a RESTful Web Service

[143]

 public function __invoke(Request $req, Response $res): Response
 {
 $profile = $req->getAttribute('profile');
 $this->profileService->deleteProfile($profile->getUsername());
 return $res->withStatus(204);
 }
}

Validating input
When implementing the PUT /profiles/{username} route, you might have noticed that
we did not pay that much attention to the validation of user inputs. To an extent, we can
actually use PHP 7's new strict typing for validating user inputs. You can activate strict
typing by using a declare(strict_types = 1) statement in the first line of your code.
Consider the following example:

return new Profile(
 $username,
 $json['givenName'],
 $json['familyName'],
 $json['passwordHash'] ?? password_hash($json['password']),
 $json['interests'] ?? [],
 $json['birthday'] ? new \DateTime($json['birthday']) : NULL
);

Assuming, for example, that the Profile class' $givenName parameter is type-hinted with
string, the previous statement will throw a TypeError when $json['givenName'] is
not set. You would then be able to catch this error using a try/catch statement and return
the appropriate 400 Bad Request HTTP response:

try {
 $this->jsonToProfile($req->getParsedBody());
} catch (\TypeError $err) {
 return $response
 ->withStatus(400)
 ->withJson(['msg' => $err->getMessage()]);
}

However, this provides only rudimentary error checking, as you can only verify data types
and cannot assert logical constraints. Also, this approach provides a bad user experience, as
the error response will only contain the first triggered error.

Creating a RESTful Web Service

[144]

For implementing a more elaborate validation, you can add another middleware to your
application (using middleware is a good choice here, because it allows you to keep the
concern of validation logic encapsulated in a single class). Let's call this class
Packt\Chp5\Middleware\ProfileValidationMiddleware:

namespace Packt\Chp5\Middleware;

class ProfileValidationMiddleware
{
 private $profileService;

 public function __construct(ProfileService $profileService)
 {
 $this->profileService = $profileService;
 }

 public function __invoke(Request $req, Response $res, callable $next):
Response
 {
 $username =
$request->getAttribute('route')->getArgument('username');
 $profileJson = $req->getParsedBody();
 $alreadyExists = $this->profileService->hasProfile($username);

 $errors = [];

 if (!isset($profileJson['familyName'])) {
 $errors[] = 'missing property "familyName"';
 }

 if (!isset($profileJson['givenName'])) {
 $errors[] = 'missing property "givenName"';
 }

 if (!$alreadyExists &&
 !isset($profileJson['password']) &&
 !isset($profileJson['passwordHash'])
) {
 $errors[] = 'missing property "password" or "passwordHash";
 }

 if (count($errors) > 0) {
 return $res
 ->withStatus(400)
 ->withJson([
 'msg' => 'request body does not contain a valid user
profile',

Creating a RESTful Web Service

[145]

 'errors' => $errors
]);
 } else {
 return $next($req, $res);
 }
 }
}

After declaring the validation middleware class, you can register it in your index.php file:

$profileMiddleware = new ProfileMiddleware($profileService);
$validationMiddleware = new ProfileValidationMiddleware($profileService);

$app = new App();
$app->get('/profiles', new ListProfileRoute($profileService));
$app->get('/profiles/{username}', new ShowProfileRoute($profileService))
 ->add($profileMiddleware);
$app->delete('/profiles/{username}', new
DeleteProfileRoute($profileService))
 ->add($profileMiddleware);
$app->put('/profiles/{username}', new PutProfileRoute($profileService))
 ->add($validationMiddleware);
$app->run();

Streams and large files
So far, our web service can perform the basic operations on a user profile. In this chapter,
we will extend the user profile service to also handle a user's profile image. During the
course of this chapter, you will learn how you can process even very large files using PHP
streams.

Profile image upload
Basically, in a RESTful application, you can treat an image just as any other resource. You
can create and update it using POST and/or PUT operations, and you can retrieve it using
GET. The only difference is the chosen representation of the resource. Instead of JSON
encoding using application/json as a Content-Type, you will now work with resources
that have a JPEG or PNG representation, with their respective image/jpeg or image/png
content types.

Creating a RESTful Web Service

[146]

At this point, it will be useful to understand how the PSR-7 standard models HTTP requests
and response bodies. Since technically, each message (both request and response) body is
just a string of characters, these could be modeled as simple PHP strings. This works fine
for the messages that you have been working with in the past few sections, but may present
problems when working with larger messages (say, for example, images). This is why PSR-7
models all message bodies as streams that a user can read from (in case of request bodies) or
write to (in case of response bodies). You can pipe data from a stream into a file or another
networked stream, without ever needing to fit the entire contents into the memory of your
PHP process.

In the next step, we will implement the user's profile image as a new resource. A user's
profile image will have the URI, /profiles/{username}/image. Loading a user's image
will be a simple GET request (returning a response with the appropriate Content-Type:
image/jpeg or image/png header and the image's binary contents as message body).
Updating an image will work the other way around, using a PUT request with a Content-
Type header and the image contents as message body.

Start by implementing a new request handler class, in which you read blocks from the
request streams and write them into a file:

namespace Packt\Chp5\Route;

class PutImageRoute
{
 private $imageDir;

 public function __construct(string $imageDir)
 {
 $this->imageDir = $imageDir;
 }

 public function __invoke(Request $req, Response $res): Response
 {
 if (!is_dir($this->imageDir)) {
 mkdir($this->imageDir);
 }

 $profile = $req->getAttribute('profile');
 $fileName = $this->imageDir . '/' . $profile->getUsername();
 $fileHandle = fopen($fileName, 'w');
 while (!$req->getBody()->eof()) {
 fwrite($fileHandle, $req->getBody()->read(4096));
 }
 fclose($fileHandle);
 return $res->withJson(['msg' => 'image was saved']);

Creating a RESTful Web Service

[147]

 }
}

This request handler opens a file handle for writing using fopen(...), then reads the
request body in blocks of 4 KB and writes them into the opened file. The advantage of this
solution is that it does not really matter if the file you are saving is 4 KB or 400 MB. As you
are only reading 4 KB blocks of the input at any time, you will have a more-or-less constant
memory usage, independent of input size.

On scalability
Storing files in the local filesystem is not very scalable and should only be
considered as an example in this case. In order to keep this scalable, you
could put your image directory on a network storage (for example, NFS)
or use other distributed storage solutions. In the following section, Using
GridFS storage you will also learn how to use GridFS to store files in a
scalable way.

Next, register the request handler at your Slim application:

$profileMiddleware = new ProfileMiddleware($profileService);
$validationMiddleware = new ProfileValidationMiddleware($profileService);

$app = new App();
// ...
$app->put('/profiles/{username}/image', new PutImageRoute(__DIR__ .
'/images')) ->add($profileMiddleware);
$app->run();

In order to test this route, find an arbitrary-sized image file on your computer and use the
following curl command on the command line (remember; as we are using
profileMiddleware for the new route, you will need to specify a user profile that actually
exists in your database for this):

curl --data-binary @very-big-image.jpeg -H 'Content-Type: image/jpeg' -X
PUT
-v http://localhost/profiles/jdoe/image

After running this command, you should find a jdoe file in the images/ directory in your
project folder with the exact same contents as the original file.

Delivering profile images back to your users works in a similar way. For this, implement a
new request handler called Packt\Chp5\Route\ShowImageRoute:

namespace Packt\Chp5\Route;

class ShowImageRoute

Creating a RESTful Web Service

[148]

{
 /** @var string */
 private $imageDir;

 public function __construct(string $imageDir)
 {
 $this->imageDir = $imageDir;
 }

 public function __invoke(Request $req, Response $res, array $args):
Response
 {
 $profile = $req->getAttribute('profile');
 $filename = $this->imageDir . '/' . $profile->getUsername();
 $fileHandle = fopen($filename, 'r');
 $contentType = mime_content_type($filename);

 return $res
 ->withStatus(200)
 ->withHeader('Content-Type', $contentType)
 ->withBody(new Body($fileHandle));
 }
}

Here, we are using the mime_content_type method to load the actual content type of the
uploaded file. The content type is needed, because the HTTP response needs to contain a
Content-Type header, which is in turn required by the browser to correctly display the
image.

Also, we are using the Slim\Http\Body class, which makes the implementation even
easier: this class implements the PSR-7 StreamInterface and can be initialized with an
open stream (which might, for example, be an open file handler). The Slim framework will
then take care of delivering the contents of this file to the user.

This request handler can also be registered in the index.php:

$app = new \Slim\App();
// ...
$app->get('/profiles/{username}/image', new
ShowImageRoute(__DIR__ . '/images'))
 ->add($profileMiddleware);
$app->put('/profiles/{username}/image', new PutImageRoute(__DIR__ .
'/images'))
 ->add($profileMiddleware);
$app->run();

Creating a RESTful Web Service

[149]

If you have uploaded a test image after implementing the PUT route, you can now test the
GET route with the same user profile. As a curl command will only return a large blob of
binary data, it might be preferable to visit http://localhost/profiles/jdoe/image in
a browser of your choice.

Using GridFS storage
Storing user-uploaded files in the server's local filesystem is a viable solution for small sites.
However, as soon as you feel the need to horizontally scale your application, you will need
to look into distributed filesystems. For example, you could replace your user images folder
with a network device that is mounted via the NFS filesystem. As you have already been
working with MongoDB a lot in this chapter, in this section you will learn about GridFS.
GridFS is a specification for storing – potentially very large – files in a MongoDB database.

The GridFS specification is simple. You will need two collections – fs.files and
fs.chunks. The former will be used to store file metadata, while the latter will store the
actual content of the files. Since MongoDB documents are limited to 16 MB by default, each
stored file will be split into several chunks of (by default) 255 KB. A file document will have
the following form:

{
 "_id": <object ID>
 "length": <file size in bytes>,
 "chunkSize": <size of each chunk in bytes, default 261120>,
 "uploadDate": <timestamp at which the file was saved>,
 "md5": <MD5 checksum of the file, as hex string>,
 "filename": <the file's name>,
 "contentType": <MIME type of file contents>,
 "aliases": <list of alternative file names>,
 "metadata": <arbitrary metadata>
}

A chunk document will have the following form:

{
 "_id": <chunk ID>,
 "files_id": <object ID of the file this chunk belongs to>,
 "n": <index of the chunk within the file>,
 "data": <binary data, of the file's chunk length>
}

Creating a RESTful Web Service

[150]

Note that GridFS is simply a recommendation on how you can store files in a MongoDB
database, and you would be free to implement any other kind of file storage in a MongoDB
store. However, GridFS is a widely accepted standard, and the chances are good that you
will find GridFS implementations for nearly every language. So, if you want to write files
into a GridFS storage using a PHP application, and then read them from there using a
Python program, you'll find standard implementations for both runtimes that you can use
out-of-the-box, without having to re-invent the wheel.

In PHP 7, you can use the helmich/gridfs library for GridFS access. You can acquire it
using Composer:

 composer require helmich/gridfs

GridFS is oriented around buckets. Each bucket can contain an arbitrary number of files,
and internally stores them in two MongoDB collections, <bucket name>.files and
<bucket name>.chunks.

Begin by modifying your application Bootstrap in your index.php by creating a new
bucket for the user profile images, using the Helmich\GridFS\Bucket class. Each bucket
can be initialized with a BucketOptions instance, in which you can configure several
bucket options, such as the bucket name.

After creating the bucket, you can pass it as a dependency into the ShowImageRoute and
PutImageRoute classes:

$manager = new \MongoDB\Driver\Manager('mongodb://db:27017');
$database = new \MongoDB\Database($manager, 'database-name');

$bucketOptions = (new \Helmich\GridFS\Options\BucketOptions)
->withBucketName('profileImages');$bucket = new
\Helmich\GridFS\Bucket($database, $bucketOptions);
$profiles = $database->selectCollection('profiles');

// ...

$app->get('/profiles/{username}/image', new
ShowImageRoute($bucket))
 ->add($profileMiddleware);
$app->put('/profiles/{username}/image', new
PutImageRoute($bucket))
 ->add($profileMiddleware);
$app->run();

Creating a RESTful Web Service

[151]

The PutImageRoute and ShowImageRoute now get a GridFS bucket passed as a
dependency. You can now adjust these classes to write uploaded files into that bucket. Let's
start by adjusting the PutImageRoute class:

use Helmich\GridFS\BucketInterface;

class PutImageRoute
{
 private $bucket;

 public function __construct(BucketInterface $bucket)
 {
 $this->bucket = $bucket
 }

 // ...
}

The interface of a GridFS bucket is described in the BucketInterface, which we are using
in this example. You can now modify the __invoke method of PutImageRoute, to store
uploaded profile images in the bucket:

public function __invoke(Request $req, Response $res, array $args):
Response
{
 $profile = $req->getAttribute('profile');
 $contentType = $req->getHeader('content-type')[0];
 $uploadOptions = (new \Helmich\GridFS\Options\UploadOptions)
 ->withMetadata(['content-type' => $contentType]);

 $stream = $req->getBody()->detach();
 $fileId = $this->bucket->uploadFromStream(
 $profile->getUsername(),
 $stream,
 $uploadOptions
);
 fclose($stream);
 return $res->withJson(['msg' => 'image was saved']);
}

In this example, we are using the $req->getBody()->detach()method to get the actual
underlying input stream from the request body. This stream is then passed into the bucket's
uploadFromStream method, together with a filename (in this case, simply the username)
and an UploadOptions object. The UploadOptions object defines configuration options
for the file upload; among others, you can specify arbitrary metadata that will be stored
alongside GridFS' own metadata in the <bucketname>.files collection.

Creating a RESTful Web Service

[152]

Now, all that's left is to adjust the ShowProfileRoute to also use the GridFS bucket. First
of all, modify the class' constructor to accept a BucketInterface as parameter, just as we
did with the PutProfileRoute. Then, you can adjust the __invoke method to download
the requested profile images from the GridFS bucket:

public function __invoke(Request $req, Response $res, array $args):
Response
{
 $profile = $req->getAttribute('profile');
 $stream =
$this->bucket->openDownloadStreamByName($profile->getUsername());
 $file = $stream->file();

 return $res
 ->withStatus(200)
 ->withHeader('content-type', $file['metadata']['content-type'])
 ->withBody(new
\Helmich\GridFS\Stream\Psr7\DownloadStreamAdapter($stream));
}

In this example, we're using the Bucket's openDownloadStreamByName method to find a
file in the bucket by its name and return a stream object from which we can download the
file.

The opened download stream is an implementation of the
Helmich\GridFS\Stream\DownloadStream interface. Unfortunately, you cannot use this
interface directly in your HTTP response. However, you can use the
Helmich\GridFS\Stream\Psr7\DownloadStreamAdapter interface to create a PSR-7
compatible stream from the GridFS stream that you can use in the HTTP response.

Summary
In this chapter, you have learned about the basic architectural principles of RESTful Web
Services and also how to build one on your own using the Slim framework. We have also
had a look at the PSR-7 standard that allows you to write HTTP components in PHP that
are portable across frameworks and become highly re-usable. Finally, you have also learned
how to use PHP's new MongoDB extension for both direct access to stored collections, and
also in combination with other high-level abstractions, such as the GridFS standard.

Both your newly acquired Slim knowledge and your understanding of the PSR-7 standard
will benefit you in the following chapter, in which you will build a real-time chat
application using the Ratchet framework – and then use PSR-7 to integrate Ratchet with the
Slim framework.

6
Building a Chat Application

In this chapter, we will build a real-time chat application usingWebSocket. You will learn
how to use the Ratchet framework to build standalone WebSocket and HTTP servers with
PHP and how to connect to WebSocket servers in a JavaScript client application. We will
also discuss how you can implement authentication for WebSocket applications and how to
deploy them in a production environment.

The WebSocket protocol
In this chapter, we'll be working extensively with WebSockets. To fully understand the
workings of the chat application that we're going to build, let's first have a look at how
WebSockets work.

The WebSockets protocol is specified inRFC 6455 and uses HTTP as the underlying
transport protocol. In contrast to the traditional request/reply paradigm, in which the client
sends a request to the server, who then replies with a response message, WebSocket
connections can be kept open for a long time, and both server and client can send and
receive messages (or data frames) on the WebSocket.

WebSocket connections are always initiated by the client (so, typically, a user's browser).
The following listing shows an example request that a browser might send to a server
supporting WebSockets:

GET /chat HTTP/1.1
Host: localhost
Upgrade: websocketConnection: upgrade
Origin: http://localhost
Sec-WebSocket-Key: de7PkO6qMKuGvUA3OQNYiw==
Sec-WebSocket-Protocol: chat
Sec-WebSocket-Version: 13

Building a Chat Application

[154]

Just like regular HTTP requests, the request contains a request method (GET) and a path
(/chat). The Upgrade and Connection headers tell the server that the client would like to
upgrade the regular HTTP connection into a WebSocket connection.

The Sec-WebSocket-Key header contains a random, base64-encoded string that uniquely
identifies this single WebSocket connection. The Sec-WebSocket-Protocol header can be
used to specify a subprotocol that the client would like to use. Subprotocols can be used to
further define what the communication between the server and the client should look like
and are often application-specific (in our case, the chat protocol).

When the server accepts the upgrade request, it will respond with a 101 Switching
Protocols response, as shown in the following listing:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: BKb5cchTfWayrC7SKtvK5yW413s=
Sec-WebSocket-Protocol: chat

The Sec-WebSocket-Accept header contains a hash of the Sec-WebSocket-Key from the
request (the exact hashing is specified in RFC 6455). The Sec-WebSocket-Protocol
header in the response confirms that the server understands the protocol that the client
specified in its request.

After this handshake is completed, the connection will stay open and both server and client
can send and receive messages from the socket.

First steps with Ratchet
In this section, you will learn how to install and use the Ratchet framework. It's important
to note that Ratchet applications work differently than regular PHP applications that are
deployed in a web server and work on a per-request basis. This will require you to adopt a
new way of thinking of how PHP applications are run and deployed.

Architectural considerations
Implementing a WebSocket server with PHP is not trivial. Traditionally, PHP's architecture
revolves around the classical request/reply paradigm: the web server receives a request,
passes it to the PHP interpreter (which is typically built into the web server or managed by
a process manager such as PHP-FPM), which processes the request and returns a response
to the web server who in turn responds to the client. The lifetime of data in a PHP script is

Building a Chat Application

[155]

limited to a single request (a principle that is calledShared Nothing).

This works well for classical web applications; especially the Shared Nothing principle as it
is one of the reasons that PHP applications usually scale very well. However, for WebSocket
support, we need a different paradigm. Client connections need to stay open for a very long
time (hours, potentially days) and servers need to react to client messages at any time
during the connection lifetime.

One library that implements this new paradigm is the Ratchet library that we'll be
working with in this chapter. In contrast to regular PHP runtimes that live within a web
server, Ratchet will start its own web server that can serve long-running WebSocket
connections. As you'll be dealing with PHP processes with extremely long run times (a
server process may run for days, weeks, or months), you will need to pay special attention
to things such as memory consumption.

Getting started
Ratchet can be easily installed usingComposer. It requires PHP in at least version 5.3.9 and
also works well with PHP 7. Start by initializing a new project with the composer init
command on a command line in your project directory:

 $ composer init .

Next, add Ratchet as a dependency to your project:

 $ composer require cboden/ratchet

Also, configure Composer's autoloader by adding the following section to the generated
composer.json file:

'autoload': {
 'PSR-4': {
 'Packt\Chp6\Example': 'src/'
 }
}

As usual, PSR-4 autoloading means that the Composer class loader will look for classes of
the Packt\Chp6\Example namespace within the src/ folder of your project directory. A
(hypothetical) Packt\Chp6\Example\Foo\Bar class would need to be defined in the file
src/Foo/Bar.php file.

Building a Chat Application

[156]

As Ratchet implements its own web server, you will not need a dedicated web server such
as Apache or Nginx (for now). Start by creating a file called server.php, in which you
initialize and run the Ratchet web server:

$app = new \Ratchet\App('localhost', 8080, '0.0.0.0');
$app->run()

You can then start your web server (it will listen on the port that you have specified as the
second parameter of the Ratchet\App constructor) using the following command:

$ php server.php

If you do not have a PHP 7 installation ready on your machine, you can get started quickly
withDocker, using the following command:

$ docker run --rm -v $PWD:/opt/app -p 8080:8080 php:7 php
/opt/app/server.php

Both of these commands will start a long-running PHP process that can directly handle
HTTP requests on your command line. In a later section, you will learn how to deploy your
application to production servers. Of course, this server does not really do much, yet.
However, you can still test it using a CLI command or your browser, as shown in the
following screenshot:

Testing the example application with HTTPie

Let's continue by adding some business logic to our server. WebSocket applications served
by Ratchet need to be PHP classes that
implement Ratchet\MessageComponentInterface. This interface defines the following
four methods:

onOpen(\Ratchet\ConnectionInterface $c) will be called whenever a new
client connects to the WebSocket server
onClose(\Ratchet\ConnectionInterface $c) will be called when a client
disconnects from the server

Building a Chat Application

[157]

onMessage(\Ratchet\ConnectionInterface $sender, $msg) will be
called when a client sends a message to the server
onError(\Ratchet\ConnectionInterface $c, \Exception $e) will be
called when an exception occurred at some point while handling a message

Let's start with a simple example: a WebSocket service that clients can send messages to,
and it will respond to the same client with the same message, but reversed. Let's call this
class Packt\Chp6\Example\ReverseEchoComponent; the code is as follows:

namespace Packt\Chp6\Example;

use Ratchet\ConnectionInterface;
use Ratchet\MessageComponentInterface;

class ReverseEchoComponent implements MessageComponentInterface
{
 public function onOpen(ConnectionInterface $conn)
 {}

 public function onClose(ConnectionInterface $conn)
 {}

 public function onMessage(ConnectionInterface $sender, $msg)
 {}

 public function onError(ConnectionInterface $conn,
 Exception $e)
 {}
}

Note that although we do not need all of the methods specified by the
MessageComponentInterface, we need to implement all of them nonetheless in order to
satisfy the interface. For example, if you do not need anything special to happen when a
client connects or disconnects, implement the onOpen and onClose methods, but just leave
them empty.

In order to better understand what's happening in this application, add some simple debug
messages to the onOpen and onClose methods, as follows:

public function onOpen(ConnectionInterface $conn)
{
 echo "new connection from " . $conn->remoteAddress . "\n";
}

public function onClose(ConnectionInterface $conn)
{

Building a Chat Application

[158]

 echo "connection closed by " . $conn->remoteAddress . "\n";
}

Next, implement the onMessage method. The $msg parameter will contain the message
that was sent by the client as string, and you can use the ConnectionInterface class'
send() method to send messages back to the client, as shown in the following code
snippet:

public function onMessage(ConnectionInterface $sender, $msg)
{
 echo "received message '$msg' from {$conn->remoteAddress}\n";
 $response = strrev($msg);
 $sender->send($response);
}

You might be inclined to use PHP 7's new type hinting feature to hint the
$msg parameter as string. This does not work in this case, because it
would change the method's interface that is prescribed by the
Ratchet\MessageComponentInterface and cause a fatal error.

You can then register your WebSocket application at the Ratchet\App instance in your
server.php file using the following code:

$app = new \Ratchet\App('localhost', 8080, '0.0.0.0');
$app->route('/reverse', new Packt\Chp6\Example\ReverseEchoComponent);
$app->run();

Testing WebSocket applications
To test WebSocket applications, I can recommend the wscat tool. It is a command-line tool
written in JavaScript (and thus requires Node.js to be running on your machine) and can be
installed using npm, as follows:

 $ npm install -g wscat

With the WebSocket server listening at port 8080, you can use wscat to open a new
WebSocket connection using the following CLI command:

 $ wscat -o localhost --connect localhost:8080/reverse

This will open a command-line prompt in which you can enter messages that are sent to the
WebSocket server. Messages received from the server will also be displayed. See the
following screenshot for an example output of both the WebSocket server and wscat:

Building a Chat Application

[159]

Testing WebSocket applications using wscat

Playing with the event loop
In the preceding example, you have only sent messages to clients after having received a
message from the same client. This is the traditional request/reply communication pattern
that works well in most scenarios. However, it is important to understand that when using
WebSockets, you are not forced to follow this pattern, but can send messages to connected
clients at any time you like.

In order to gain a better understanding of the possibilities you have in a Ratchet application,
let's have a look at the architecture of Ratchet. Ratchet is built on ReactPHP; an event-driven
framework for network applications. The central component of a React application is the
event loop. Each event that is triggered in the application (for example, when a new user
connects or sends a message to the server) is stored in a queue, and the event loop processes
all events stored in this queue.

ReactPHP offers different implementations of event loops. Some of these require additional
PHP extensions such as libevent or ev to be installed (and typically, the event loops based
on libevent, ev, or similar extensions offer the best performance). Usually, applications
like Ratchet will automatically choose which event loop implementation to use so that you
do not need to concern yourself with the inner workings of ReactPHP if you do not want to.

By default, a Ratchet application creates its own event loop; however, you can also inject
your own event loop into the Ratchet\App class that you've created yourself.

All ReactPHP event loops must implement the interface
React\EventLoop\LoopInterface. You can use the class React\EventLoop\Factory
to automatically create an implementation of this interface that is supported by your
environment:

$loop = \React\EventLoop\Factory::create();

Building a Chat Application

[160]

You can then pass this $loop variable into your Ratchet application:

$app = new \Ratchet\App('localhost', 8080, '0.0.0.0', $loop)
$app->run();

Having direct access to the event loop allows you to implement some interesting features.
For example, you can use the event loop's addPeriodicTimer function to register a
callback that will be executed by the event loop in a periodic interval. Let's use this feature
in a short example by building a new WebSocket component called
Packt\Chp6\Example\PingComponent:

namespace Packt\Chp6\Example;

use Ratchet\MessageComponentInterface;
use React\EventLoop\LoopInterface;

class PingCompoment extends MessageComponentInterface
{
 private $loop;
 private $users;

 public function __construct(LoopInterface $loop)
 {
 $this->loop = $loop;
 $this->users = new \SplObjectStorage();
 }

 // ...
}

In this example, the $users property will help us to keep track of connected users. Each
time a new client connects, we can use the onOpen event to store the connection in the
$users property, and use the onClose event to remove the connection:

public function onOpen(ConnectionInterface $conn)
{
 $this->users->attach($conn);
}

public function onClose(ConnectionInterface $conn)
{
 $this->users->detach($conn);
}

Building a Chat Application

[161]

As our WebSocket component now knows the connected users, we can use the event loop
to register a timer that periodically broadcasts messages to all connected users. This can be
easily done in the constructor:

public function __construct(LoopInterface $loop)
{
 $this->loop = $loop;
 $this->users = new \SplObjectStorage();

 $i = 0;
 $this->loop->addPeriodicTimer(5, function() use (&$i) {
 foreach ($this->users as $user) {
 $user->send('Ping ' . $i);
 }
 $i ++;
 });
}

The function passed to addPeriodicTimer will be called every five seconds and will send
a message with an incrementing counter to each connected user. Modify your server.php
file to add this new component to your Ratchet application:

$loop = \React\EventLoop\Factory::create();
$app = new \Ratchet\App('localhost', 8080, '0.0.0.0', $loop)
$app->route('/ping', new PingCompoment($loop));
$app->run();

You can again test this WebSocket handler using wscat, as shown in the following
screenshot:

Periodic messages cast by a periodic event loop timer

This is a good example of a scenario in which a WebSocket client receives updates from a
server without having explicitly requested them. This offers efficient ways to push new data
to connected clients in near real-time, without the need to repeatedly poll for information.

Building a Chat Application

[162]

Implementing the chat application
After this short introduction in the development with WebSockets, let us now begin
implementing the actual chat application. The chat application will consist of the server-side
application built in PHP with Ratchet, and an HTML and JavaScript-based client that will
run in the user's browser.

Bootstrapping the project server-side
As mentioned in the previous section, applications based on ReactPHP will achieve the best
performance when used with an event-loop extension such as libevent or ev.
Unfortunately, the libevent extension is not compatible with PHP 7, yet. Luckily,
ReactPHP also works with the ev extension, whose latest version already supports PHP 7.
Just like in the previous chapter, we'll be working with Docker in order to have a clean
software stack to work on. Start by creating a Dockerfile for your application container:

FROM php:7
RUN pecl install ev-beta && \
 docker-php-ext-enable ev
WORKDIR /opt/app
CMD ["/usr/local/bin/php", "server.php"]

You will then be able to build an image from this file and start the container using the
following CLI command from within your project directory:

 $ docker build -t packt-chp6
 $ docker run -d --name chat-app -v $PWD:/opt/app -p 8080:8080
 packt-chp6

Note that this command will not actually work as long as there is no server.php file in
your project directory.

Just as in the previous example, we will be using Composer as well for dependency
management and for autoloading. Create a new folder for your project and create a
composer.json file with the following contents:

{
 "name": "packt-php7/chp6-chat",
 "type": "project",
 "authors": [{
 "name": "Martin Helmich",
 "email": "php7-book@martin-helmich.de"
 }],
 "require": {

Building a Chat Application

[163]

 "php": ">= 7.0.0",
 "cboden/ratchet": "^0.3.4"
 },
 "autoload": {
 "psr-4": {
 "Packt\\Chp6": "src/"
 }
 }
}

Continue by installing all required packages by running composer install in your
project directory and create a provisional server.php file with the following contents:

<?php
require_once 'vendor/autoload.php';

$app = new \Ratchet\App('localhost', 8080, '0.0.0.0');
$app->run();

You have already used the Ratchet\App constructor in the introductory example. A few
words concerning this class' constructor parameters:

The first parameter, $httpHost is the HTTP hostname at which your application
will be available. This value will be used as the allowed origin host. This means
that when your server is listening on localhost, only JavaScript running on the
localhost domain will be allowed to connect to your WebSocket server.
The $port parameter is specified at which port your WebSocket server will listen
on. Port 8080 will suffice for now; in a later section, you will learn how you can
safely configure your application to be available on the HTTP standard port 80.
The $address parameter describes the IP address the WebSocket server will
listen on. This parameter's default value is '127.0.0.1', which would allow
clients running on the same machine to connect to your WebSocket server. This
won't work when you are running your application in a Docker container. The
string '0.0.0.0' will instruct the application to listen on all available IP
addresses.
The fourth parameter, $loop, allows you to inject a custom event loop into the
Ratchet application. If you do not pass this parameter, Ratchet will construct its
own event loop.

You should now be able to start your application container using the following command:

 $ docker run --rm -v $PWD:/opt/app -p 8080:8080 packt-chp6

Building a Chat Application

[164]

As your application is now one single, long-running PHP process, changes
to your PHP code base will not become effective until you restart the
server. Keep in mind that you stop the server using Ctrl + C and restart it
using the same command (or using the docker restart chat-app
command) when making changes to your application's PHP code.

Bootstrapping the HTML user interface
The user interface for our chat application will be based on HTML, CSS, and JavaScript. For
managing frontend dependencies, we will be using Bower in this example. You can install
Bower using npm with the following command (as root or with sudo):

 $ npm install -g bower

Continue by creating a new directory public/ in which you can place all your frontend
files. In this directory, place a file bower.json with the following contents:

{
 "name": "packt-php7/chp6-chat",
 "authors": [
 "Martin Helmich <php7-book@martin-helmich.de>"
],
 "private": true,
 "dependencies": {
 "bootstrap": "~3.3.6"
 }
}

After creating the bower.json file, you can install the declared dependencies (in this case,
the Twitter Bootstrap framework) using the following command:

 $ bower install

This will download the Bootstrap framework and all its dependencies (actually, only the
jQuery library) into the directory bower_components/, from which you will be able to
include them in your HTML frontend files later.

It's also useful to have a web server up and running that can serve your HTML frontend
files. This is especially important when your WebSocket application is restricted to a
localhost origin, which will only allow requests from JavaScript served from the
localhost domain (which does not include local files opened in a browser). One quick and
easy way is to use the nginx Docker image. Be sure to run the following command from
within your public/ directory:

Building a Chat Application

[165]

 $ docker run -d --name chat-web -v $PWD:/var/www -p 80:80 nginx

After that, you will be able to open http://localhost in your browser and view the static
files from your public/ directory. If you place an empty index.html in that directory,
Nginx will use that page as an index page that will not need to be explicitly requested by its
path (meaning that http://localhost will serve the contents of the file index.html to
the user).

Building a simple chat application
You can now start implementing the actual chat application. As already shown in the
previous examples, you need to implement Ratchet\MessageComponentInterface for
this. Start by creating a Packt\Chp6\Chat\ChatComponent class and implementing all
methods that are required by the interface:

namespace Packt\Chp6\Chat;

use Ratchet\MessageComponentInterface;
use Ratchet\ConnectionInterface;

class ChatComponent implements MessageComponentInterface
{
 public function onOpen(ConnectionInterface $conn) {}
 public function onClose(ConnectionInterface $conn) {}
 public function onMessage(ConnectionInterface $from, $msg) {}
 public function onError(ConnectionInterface $conn, \Exception $err) {}
}

The first thing that the chat application needs to do is to keep track of connected users. For
this, you will need to maintain a collection of all open connections, add new connections
when a new user connects, and remove them when a user disconnects. For this, initialize an
instance of the SplObjectStorage class in the constructor:

private $users;

public function __construct()
{
 $this->users = new \SplObjectStorage();
}

Building a Chat Application

[166]

You can then attach new connections to this storage in the onOpen event and remove them
in the onClose event:

public function onOpen(ConnectionInterface $conn)
{
 echo "user {$conn->remoteAddress} connected.\n";
 $this->users->attach($conn);
}

public function onClose(ConnectionInterface $conn)
{
 echo "user {$conn->remoteAddress} disconnected.\n";
 $this->users->detach($conn);}

Each connected user can now send messages to the server. For each received message, the
component's onMessage method will be called. To implement a real chat application, each
received message needs to be relayed to the other users-conveniently, you already have a
list of all connected users in your $this->users collection to whom you can then send the
received message:

public function onMessage(ConnectionInterface $from, $msg)
{
 echo "received message '$msg' from user {$from->remoteAddress}\n";
foreach($this->users as $user) {
 if ($user != $from) {
 $user->send($msg);
 }
 }}

You can then register your chat component at the Ratchet application in your server.php
file:

$app = new \Ratchet\App('localhost', 8080, '0.0.0.0');
$app->route('/chat', new \Packt\Chp6\Chat\ChatComponent);
$app->run();

After restarting your application, test the chat functionality by opening two WebSocket
connections with wscat in two separate terminals. Each message that you send in one
connection should pop up in the other.

Building a Chat Application

[167]

Testing the rudimentary chat application using two wscat connections

Now that you have an (admittedly, still rudimentary) chat server running, we can start
building the HTML frontend for the chat application. For the beginning, a static HTML file
will be completely sufficient for this. Begin by creating an empty index.html file in your
public/ directory:

<!DOCTYPE html>
<html>
 <head>
 <title>Chat application</title>
 <script src="bower_components/jquery/dist/jquery.min.js"></script>
 <script
src="bower_components/bootstrap/dist/js/bootstrap.min.js"></script>
<link rel="stylesheet"
href="bower_components/bootstrap/dist/css/bootstrap.min.css"/>
 </head>
 <body>
 </body>
</html>

In this file, we are already including the frontend libraries that we'll use for this example;
the Bootstrap framework (with one JavaScript and one CSS file) and the jQuery library
(with one other JavaScript file).

Building a Chat Application

[168]

As you will be writing a fair amount of JavaScript for this application, it is also useful to
add another instance of a js/app.js file in which you can place your own JavaScript code
to the <head> section of the HTML page:

<head>
 <title>Chat application</title>
 <script src="bower_components/jquery/dist/jquery.min.js"></script>
 <script
src="bower_components/bootstrap/dist/js/bootstrap.min.js"></script>
 <script src="js/app.js"></script>
 <link rel="stylesheet"
href="bower_components/bootstrap/dist/css/bootstrap.min.css"/>
</head>

You can then continue by building a minimalist chat window in the <body> section of your
index.html file. All you need to get started is an input field for writing messages, a button
for sending them, and an area for displaying other user's messages:

<div class="container">
 <div class="row">
 <div class="col-md-12">
 <div class="input-group">
 <input class="form-control" type="text" id="message"
placeholder="Your message..." />

 <button id="submit" class="btn btn-primary">Send</button>

 </div>
 </div>
 </div>
 <div class="row">
 <div id="messages"></div>
 </div>
</div>

The HTML file contains an input field (id="message") in which a user can enter new chat
messages, a button (id="submit") to submit the message, and a (currently still empty)
section (id="messages") in which the messages received from other users can be
displayed. The following screenshot shows how this page will be displayed in the browser:

Building a Chat Application

[169]

Of course, all of this will not be any good without the appropriate JavaScript to actually
make the chat work. In JavaScript, you can open a WebSocket connection by using the
WebSocket class.

On browser support
WebSockets are supported in all modern browsers and have been for quite
some time. You may run into issues where you need to support older
Internet Explorer versions (9 and below), which do not support
WebSockets. In this case, you can use the web-socket-js library, which
internally uses a fallback using Flash, which is also well supported by
Ratchet.

In this example, we will be placing all our JavaScript code in the file js/app.js in the
public/ directory. You can open a new WebSocket connection by instantiating the
WebSocket class with the WebSocket server's URL as the first parameter:

var connection = new WebSocket('ws://localhost:8080/chat');

Just like the server-side component, the client-side WebSocket offers several events that you
can listen on. Conveniently, these events are named similarly to the methods used by
Ratchet, onopen, onclose, and onmessage, all of which you can (and should) implement
in your own code:

connection.onopen = function() {
 console.log('connection established');
}

connection.onclose = function() {

Building a Chat Application

[170]

 console.log('connection closed');
}

connection.onmessage = function(event) {
 console.log('message received: ' + event.data);
}

Receiving messages
Each client connection will have a corresponding ConnectionInterface instance in the
Ratchet server application. When you call a connection's send() method on the server, this
will trigger the onmessage event on the client side.

Each time a new message is received; this message should be displayed in the chat window.
For this, you can implement a new JavaScript method appendMessage that will display a
new message in the previously created message container:

var appendMessage = function(message, sentByMe) {
 var text = sentByMe ? 'Sent at' : 'Received at';
 var html = $('<div class="msg">' + text + ' : </div>');

 html.find('.date').text(new Date().toLocaleTimeString());
 html.find('.text').text(message);

 $('#messages').prepend(html);
}

In this example, we are using a simple jQuery construct to create a new HTML element and
populate it with the current date and time and the actual message text received. Be aware
that a single message currently only consists of the raw message text and does not yet
contain any kind of meta data, such as an author or other information. We'll get to that later.

While creating HTML elements with jQuery is sufficient in this case, you
might want to consider using a dedicated templating engine such as
Mustache or Handlebars in a real-world scenario. Since this is not a
JavaScript book, we will be sticking to the basics here.

You can then call the appendMessage method when a message is received:

connection.onmessage = function(event) {
 console.log('message received: ' + event.data);
 appendMessage(event.data, false);
}

Building a Chat Application

[171]

The event's data property contains the entire received message as a string and you can use it
as you see fit. Currently, our chat application is only equipped to handle plain text chat
messages; whenever you need to transport more or structured data, using JSON encoding is
probably a good option.

Sending messages
To send messages, you can (unsurprisingly) use the connection's send() method. Since you
already have the respective user input fields in your HTML file, all it needs now to get the
first version of our chat working is a little more jQuery:

$(document).ready(function() {
 $('#submit').click(function() {
 var message = $('#message').val();

 if (message) {
 console.log('sending message: "' + message + '"');
 connection.send(message);

 appendMessage(message, true);
 }
 });
});

As soon as the HTML page is loaded completely, we begin listening on the submit button's
click event. When the button is clicked, the message from the input field is sent to the
server using the connection's send() method. Each time a message is sent, Ratchet will call
the onMessage event in the server-side component, allowing the server to react to that
message and to dispatch it to other connected users.

Usually, a user will want to see messages that they sent themselves in the chat window, too.
That is why we are calling the appendMessage that was implemented previously, which
will insert the sent message into the message container, just as if it was received from a
remote user.

Testing the application
When both containers (web server and WebSocket application) are running, you can now
test the first version of your chat by opening the URL http://localhost in your browser
(better yet, open the page twice in two different windows so that you can actually use the
application to chat with yourself).

Building a Chat Application

[172]

The following screenshot shows an example of the result that you should get when testing
the application:

Testing the first version of the chat application with two browser windows

Keeping the connection from timing out
When you keep the test site open for more than a few minutes, you might notice that
eventually the WebSocket connection will be closed. This is because most browsers will
close a WebSocket connection when no messages were sent or received in a certain time
frame (usually five minutes). As you are working with long-running connections, you will
also need to consider connectivity issues-what if one of your users uses a mobile connection
and temporarily disconnects while using your application?

The easiest way to mitigate this is to implement a simple re-connect mechanism-whenever
the connection is closed, wait a few seconds and then try again. For this, you can start a
timeout in the onclose event in which you open a new connection:

connection.onclose = function(event) {
 console.error(e);
 setTimeout(function() {
 connection = new WebSocket('ws://localhost:8080/chat');
 }, 5000);
}

This way, each time the connection is closed (due to a timeout, network connectivity
problems, or any other reason); the application will try to re-establish the connection after a
grace time of five seconds.

Building a Chat Application

[173]

If you want to proactively prevent disconnects, you can also periodically send messages
through the connection in order to keep the connection alive. This can be done by
registering an interval function that periodically (in intervals smaller than the timeout)
sends messages to the server:

var interval;

connection.onopen = function() {
 console.log('connection established');
 interval = setInterval(function() {
 connection.send('ping');
 }, 120000);
}

connection.onclose = function() {
 console.error(e);
 clearInterval(interval);
 setTimeout(function() {
 connection = new WebSocket('ws://localhost:8080/chat');
 }, 5000);
}

There are a few caveats to consider here: first of all, you should only start sending keep-
alive messages after the connection was actually established (that is why we are registering
the interval in the onopen event), and you should also stop sending keep-alives when the
connection was closed (which can still happen, for example, when the network is not
available), which is why the interval needs to be cleared in the onclose event.

Furthermore, you probably do not want keep-alive messages to be broadcast to the other
connected clients; this means that these messages also need a special handling in the server-
side component:

public function onMessage(ConnectionInterface $from, $msg)
{
 if ($msg == 'ping') {
 return;
 }

 echo "received message '$msg' from user {$from->remoteAddress}\n";
 foreach($this->users as $user) {
 if ($user != $from) {
 $user->send($msg);
 }
 }
}

Building a Chat Application

[174]

Deployment options
As you have already noticed, Ratchet applications are not deployed like your typical PHP
application, but in fact run their own HTTP server that can directly answer HTTP requests.
Also, most applications will not only serve WebSocket connections, but also need to process
regular HTTP requests, too.

This section is meant to give you an overview on how to deploy a Ratchet
application in a production environment. For the remaining sections of
this chapter, we will continue using the Docker-based development setup
(without load balancing and fancy process managers) for the sake of
simplicity.

This will open an entire set of new problems to solve. One of them is scalability: by default,
PHP runs single-threaded, so even when using the asynchronous event loop offered by
libev, your application will never scale beyond a single CPU. While you could consider
using the pthreads extension to enable threading in PHP (and to enter a whole new world
of pain), it is usually easier to simply start the Ratchet application multiple times, have it
listen on different ports, and use a load-balancer such as Nginx to distribute HTTP requests
and WebSocket connections among them.

For processing regular (non-WebSocket) HTTP requests, you can still use a regular PHP
process manager such as PHP-FPM or Apache's PHP module. You can then configure
Nginx to dispatch those regular requests to FPM and all WebSocket requests to one of your
running Ratchet applications.

Deploying and load-balancing Ratchet applications using an Nginx load balancer

Building a Chat Application

[175]

To achieve this, you first need to make the port that your application listens on so that it can
be configured separately for each running process. As the application is started through the
command line, the easiest way to make the port configurable per-process is a command-line
parameter. You can use the getopt function to easily parse command-line parameters.
While you're at it, you can also make the listen address configurable. Insert the following
code into your server.php file:

$options = getopt('l:p:', ['listen:', 'port:']);
$port = $options['port'] ?? $options['p'] ?? 8080;
$addr = $options['listen'] ?? $options['l'] ?? '127.0.0.1';

$app = new \Ratchet\App('localhost', $port, $addr);
$app->route('/chat', new \Packt\Chp6\Chat\ChatComponent);
$app->run();

Next, you need to make sure your server actually automatically starts a sufficient number of
processes. In a Linux environment, the Supervisor tool is usually a good choice for this. On
Ubuntu or Debian Linux systems, you can install it from the system's package repositories
using the following command:

 $ apt-get install supervisor

You can then place a configuration file in /etc/supervisor/conf.d/ with the following
contents:

[program:chat]
numprocs=4
command=php /path/to/application -port=80%(process_num)02d
process_name=%(program_name)s-%(process_num)02d
autostart=true
autorestart=unexpected

This will configure Supervisor to start four instances of the chat application on system boot.
They will listen at the ports 8000 to 8003 and will automatically be restarted by Supervisor
when they unexpectedly terminate-remember: a PHP fatal error may be relatively harmless
in a FPM-managed environment, but in a standalone PHP process, a single fatal error will
bring down your entire application for all users until someone restarts the process. For this
reason, it's good to have a service like Supervisor that automatically restarts crashed
processes.

Next, install an Nginx web server to serve as a load balancer for the four running chat
applications. On Ubuntu or Debian, install Nginx as follows:

 $ apt-get install nginx

Building a Chat Application

[176]

After having installed Nginx, place a configuration file chat.conf in the directory
/etc/nginx/sites-enabled/ with the following contents:

upstream chat {
 server localhost:8000;
 server localhost:8001;
 server localhost:8002;
 server localhost:8003;
}
server {
 listen 80;
 server_name chat.example.com;

 location /chat/ {
 proxy_pass http://chat;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 }

 // Additional PHP-FPM configuration here
 // ...
}

This configuration will configure all four application processes as upstream servers for the
Nginx load balancer. All HTTP requests starting with the /chat/ path will be forwarded to
one of the Ratchet applications running on the server. The proxy_http_version and
proxy_set_header directives are necessary to allow Nginx to correctly forward the
WebSocket handshake between server and client.

Bridging Ratchet and PSR-7 applications
Sooner or later, your chat application will also need to respond to regular HTTP requests
(for example, this will become necessary as soon as you want to add an authentication layer
with a login form and authentication processing).

As explained in the previous section, a common setup for WebSocket applications in PHP is
to have a Ratchet application handle all WebSocket connections, and to direct all regular
HTTP requests to a regular PHP-FPM setup. However, as a Ratchet application in fact also
ships its own HTTP server, you can also respond to regular HTTP requests directly from
your Ratchet application.

Building a Chat Application

[177]

Just as you have used the Ratchet\MessageComponentInterface to implement
WebSocket applications, you can use the Ratchet\HttpServerInterface to implement a
regular HTTP server. As an example, consider the following class:

namespace Packt\Chp6\Http;

use Guzzle\Http\Message\RequestInterface;
use Ratchet\ConnectionInterface;
use Ratchet\HttpServerInterface;

class HelloWorldServer implements HttpServerInterface
{
 public function onOpen(ConnectionInterface $conn, RequestInterface
$request = null)
 {}

 public function onClose(ConnectionInterface $conn)
 {}

 public function onError(ConnectionInterface $conn, \Exception $e)
 {}

 public function onMessage(ConnectionInterface $from, $msg)
 {}
}

As you can see, the methods defined by the HttpServerInterface are similar to the
MessageCompomentInterface. The only difference is the $request parameter that is now
additionally passed into the onOpen method. This class is an instance of the
Guzzle\Http\Message\RequestInterface (which, unfortunately, does not implement
the PSR-7 RequestInterface) from which you can get the basic HTTP request properties.

You can now use the onOpen method to send a regular HTTP in response to a received
HTTP request:

public function onOpen(ConnectionInterface $conn, RequestInterface $request
= null)
{
 $conn->send("HTTP/1.1 200 OK\r\n");
 $conn->send("Content-Type: text/plain\r\n");
 $conn->send("Content-Length: 13\r\n");
 $conn->send("\r\n");
 $conn->send("Hello World\n");
 $conn->close();
}

Building a Chat Application

[178]

As you can see, you'll have to send the entire HTTP response (including response headers!)
in the onOpen method. This is a bit tedious, and we'll find a better way for that later, but it
will suffice for the moment.

Next, register your HTTP server in your server.php the same way that you would register
a new WebSocket server:

$app = new \Ratchet\App('localhost', $port, $addr);
$app->route('/chat', new \Packt\Chp6\Chat\ChatComponent);
$app->route('/hello', new \Packt\Chp6\Http\HelloWorldServer, ['*']);
$app->run();

Especially note the third parameter ['*'] here: this parameter will allow any request
origin (not just localhost) for this route, as most browsers and command-line clients will
not even send an origin header for regular HTTP requests.

After restarting your application, you can test the new HTTP route using any regular HTTP
client, either on the command line or using your browser. As shown in the following
screenshot:

Testing a Ratchet HTTP server using cURL

Building an HTTP response including headers by hand is a very tedious task-especially if at
some point, your application contains multiple HTTP endpoints. For this reason, it would
be nice to have a framework that handles all this stuff for you.

In the previous chapter, you've already worked with the Slim framework, which you can
also integrate quite nicely with Ratchet. Unfortunately, Ratchet is not (yet) PSR-7 compliant,
so you'll have to do some legwork to convert Ratchet's request interfaces to PSR-7 instances
and pipe PSR-7 responses back into the ConnectionInterface.

Start by installing the Slim framework into your application using Composer:

 $ composer require slim/slim

Building a Chat Application

[179]

The goal of the remainder of this section will be to build a new implementation of the
HttpServerInterface that takes a Slim application as a dependency and forwards all
incoming requests to the Slim application.

Start by defining the class Packt\Chp6\Http\SlimAdapterServer that implements the
HttpServerInterface and accepts a Slim\App as a dependency:

namespace Packt\Chp6\Http;

use Guzzle\Http\Message\RequestInterface;
use Ratchet\ConnectionInterface;
use Ratchet\HttpServerInterface;
use Slim\App;

class SlimAdapterServer implements HttpServerInterface
{
 private $app;

 public function __construct(App $app)
 {
 $this->app = $app;
 }

 // onOpen, onClose, onError and onMessage omitted
 // ...
}

The first thing that you'll need to do is to map the $request parameter that Ratchet passes
into the onOpen event to a PSR-7 request object (which you can then pass into the Slim
application for processing). The Slim framework ships its own implementation of this
interface: the class Slim\Http\Request. Start by adding the following code to your
onOpen method, which maps the request URI to an instance of the Slim\Http\Uri class:

$guzzleUri = $request->getUrl(true);
$slimUri = new \Slim\Http\Uri(
 $guzzleUri->getScheme() ?? 'http',
 $guzzleUri->getHost() ?? 'localhost',
 $guzzleUri->getPort(),
 $guzzleUri->getPath(),
 $guzzleUri->getQuery() . '',
 $guzzleUri->getFragment(),
 $guzzleUri->getUsername(),
 $guzzleUri->getPassword()
);

Building a Chat Application

[180]

This will map the Guzzle request's URI object in a Slim URI object. These are largely
compatible, allowing you to simply copy most of the properties into the Slim\Http\Uri
class' constructor. Only the $guzzleUri->getQuery() return value needs to be forced into
a string by concatenating it with an empty string.

Continue by building the HTTP request header object:

$headerValues = [];
foreach ($request->getHeaders() as $name => $header) {
 $headerValues[$name] = $header->toArray();
}
$slimHeaders = new \Slim\Http\Headers($headerValues);

After having built both the request URI and headers, you can create an instance of the
SlimRequest class:

$slimRequest = new \Slim\Http\Request(
 $request->getMethod(),
 $slimUri,
 $slimHeaders,
 $request->getCookies(),
 [],
 new \Slim\Http\Stream($request->getBody()->getStream());
);

You can then use this request object to invoke the Slim application that you've passed as a
dependency into the SlimAdapterServer class:

$slimResponse = new \Slim\Http\Response(200);
$slimResponse = $this->app->process($slimRequest, $slimResponse);

The $this->app->process() function will actually execute the Slim application. It works
similar to the $app->run() method that you've worked with in the previous chapter, but
directly accepts a PSR-7 request object and returns a PSR-7 response object for further
processing.

The final challenge is now to use the $slimResponse object and return all data contained
in it back to the client. Let's start by sending the HTTP headers:

$statusLine = sprintf('HTTP/%s %d %s',
 $slimResponse->getProtocolVersion(),
 $slimResponse->getStatusCode(),
 $slimResponse->getReasonPhrase()
);
$headerLines = [$statusLine];

foreach ($slimResponse->getHeaders() as $name => $values) {

Building a Chat Application

[181]

 foreach ($values as $value) {
 $headerLines[] = $headerName . ': ' . $value;
 }
}

$conn->send(implode("\r\n", $headerLines) . "\r\n\r\n");

The $statusLine contains the first line of the HTTP response (usually, something like
HTTP/1.1 200 OK or HTTP/1.1 404 Not Found). The nested foreach loops are used to
collect all response headers from the PSR-7 response object and concatenate them into a
string that can be used in an HTTP response (each header gets its own line, separated by
both a Carriage Return (CR) and Line Feed (LF) newline). The double \r\n finally
terminates the header and marks the beginning of the response body, which you'll output
next:

$body = $slimResponse->getBody();
$body->rewind();

while (!$body->eof()) {
 $conn->send($body->read(4096));
}
$conn->close();

In your server.php file, you can now instantiate a new Slim application, pass it into a new
SlimAdapterServer class, and register this server at the Ratchet application:

use Slim\App;
use Slim\Http\Request;
use Slim\Http\Response;

$slim = new App();
$slim->get('/hello', function(Request $req, Response $res): Response {
 $res->getBody()->write("Hello World!");
 return $res;
});
$adapter = new \Packt\Chp6\Http\SlimAdapterServer($slim);

$app = new \Ratchet\App('localhost', $port, $addr);
$app->route('/chat', new \Packt\Chp6\Chat\ChatComponent);
$app->route('/hello', $adapter, ['*']);
$app->run();

Building a Chat Application

[182]

Integrating the Slim framework into your Ratchet application allows you to serve both
WebSocket requests and regular HTTP requests with the same application. Serving HTTP
requests from one continuously running PHP process presents interesting new
opportunities, although you'll have to use these with care. You will need to worry about
things like memory consumption (PHP does have a Garbage Collector, but if you do not
pay attention, you may still create a memory leak that will cause your PHP process to run
into the memory limit and crash and burn), but building applications like these may be an
interesting alternative when you have high-performance requirements.

Accessing your application via the web
server
In our development setup, we're currently running two containers, the application
container itself, listening on port 8080 and an Nginx server listening on port 80 that serves
static files such as the index.html and various CSS and JavaScript files. Exposing two
different ports for static files and the application itself is often not recommendable in a
production setup.

Because of this, we will now configure our web server container to serve a static file, when
it's present (such as the index.html or CSS and JavaScript files), and to delegate the HTTP
request to the application container when no actual file with the given name exists. For this,
start by creating an Nginx configuration file that you can place anywhere in your project
directory-for example, etc/nginx.conf:

map $http_upgrade $connection_upgrade {
 default upgrade;
 '' close;
}

server {
 location / {
 root /var/www;
 try_files $uri $uri/index.html @phpsite;
 }

 location @phpsite {
 proxy_http_version 1.1;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection $connection_upgrade;

Building a Chat Application

[183]

 proxy_pass http://app:8080;
 }
}

This configuration will cause Nginx to look for files in the /var/www directory (when using
Docker to start the Nginx web server, you can simply mount your local directory into the
container's /var/www directory). There, it will first look for a direct filename match, then for
an index.html inside a directory, and as a last option, pass the request to an upstream
HTTP server.

This configuration is also suitable for a production setup as described in
the Deployment options section. When you have multiple instances of your
application running, you will need to reference a dedicated upstream
configuration with multiple upstream applications in your proxy_pass
statement.

After creating the configuration file, you can re-create your Nginx container as follows (pay
special attention to the --link flag of the docker run command):

$ docker rm -f chat-web
$ docker run -d --name chat-web --link chat-app:app -v $PWD/public:/var/www
-p 80:80 nginx

Adding authentication
Currently, our application is missing one crucial feature: anyone can post messages in the
chat, and there is also no way to determine which user sent which message. Because of this,
in the next step, we will add an authentication layer to our chat application. For this, we'll
need a login form and some kind of authentication handler.

In this example, we will use a typical session-based authentication. After successfully
authenticating the username and password, the system will create a new session for the
user and store the (random and non-guessable) session ID in a cookie on the user's browser.
On subsequent requests, the authentication layer can use the session ID from the cookie to
look up the currently authenticated user.

Building a Chat Application

[184]

Creating the login form
Let's start by implementing a simple class for managing sessions. This class will be named
Packt\Chp6\Authentication\SessionProvider:

namespace Packt\Chp6\Authentication;

class SessionProvider
{
 private $users = [];

 public function hasSession(string $sessionId): bool
 {
 return array_key_exists($sessionId, $this->users);
 }

 public function getUserBySession(string $sessionId): string
 {
 return $this->users[$sessionId];
 }

 public function registerSession(string $user): string
 {
 $id = sha1(random_bytes(64));
 $this->users[$id] = $user;
 return $id;
 }
}

This session handler is built extremely simple: it simply stores which user (by name) is
using which session ID; new sessions can be registered using the registerSession
method. As all HTTP requests will be served by the same PHP process, you do not even
need to persist these sessions in a database, but can simply keep them in-memory (however,
you will need database-backed session storage as soon as you have multiple processes
running in a load-balanced environment, as you cannot simply share memory between
different PHP processes).

On really random random numbers
In order to generate a cryptographically secure session ID, we're using the
random_bytes function which was added in PHP 7 and is now the
suggested way to obtain cryptographically secure random data (do not
use functions such as rand or mt_rand for this, ever).

Building a Chat Application

[185]

In the following steps, we'll implement a few additional routes into our newly integrated
Slim application:

The GET / route will serve the actual chat HTML site. Up until now, this was a1.
static HTML page that was served directly by the web server. Using
authentication, we will be needing a bit more login on this site (for example,
redirecting a user to the login page when they are not logged in), which is why
we're moving the index page into the application.
The GET /login route will serve a login form in which users can authenticate2.
with a username and password. Provided credentials will be submitted to the…
POST /authenticate route. This route will verify credentials provided by a3.
user and start a new session (using the previously-built SessionProvider class)
when a user was successfully authenticated. After a successful authentication, the
/authenticate route will redirect the user back to the / route.

Let's start by registering these three routes in the Ratchet application and connecting them
to the previously created Slim adapter in the server.php file:

$app = new \Ratchet\App('localhost', $port, $addr);
$app->route('/chat', new \Packt\Chp6\Chat\ChatComponent);
$app->route('/', $adapter, ['*']);
$app->route('/login', $adapter, ['*']);
$app->route('/authenticate', $adapter, ['*']);
$app->run();

Continue by implementing the / route. Remember, this route is supposed to simply serve
the index.html file that you have already created previously, but only if a valid user
session exists. For this, you will have to check if there is an HTTP cookie with a session ID
provided within the HTTP request and then verify that there is a valid user session with
this ID. For this, add the following code to your server.php (also, remove the previously
created GET /hello route, if still present). As shown in the following code:

$provider = new \Packt\Chp6\Authentication\SessionProvider();
$slim = new \Slim\App();
$slim->get('/', function(Request $req, Response $res) use ($provider):
Response {
 $sessionId = $req->getCookieParams()['session'] ?? '';
 if (!$provider->hasSession($sessionId)) {
 return $res->withRedirect('/login');
 }
 $res->getBody()->write(file_get_contents('templates/index.html'));
 return $res
 ->withHeader('Content-Type', 'text/html;charset=utf8');
});

Building a Chat Application

[186]

This route serves the file templates/index.html to your users. Currently, this file should
be located in the public/ directory in your setup. Create the templates/ directory in your
project folder and move the index.html there from the public/ directory. This way, the
file will not be served by the Nginx web server anymore, and all requests to / will be
directly forwarded to the Ratchet application (which will then either deliver the index view
or redirect the user to the login page).

In the next step, you can implement the /login route. No special logic is required for this
route:

$slim->get('/login', function(Request $req, Response $res): Response {
 $res->getBody()->write(file_get_contents('templates/login.html'));
 return $res
 ->withHeader('Content-Type', 'text/html;charset=utf8');
});

Of course, for this route to actually work, you will need to create the
templates/login.html file. Start by creating a simple HTML document for this new
template:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Chap application: Login</title>
 <script src="bower_components/jquery/dist/jquery.min.js"></script>
 <script
src="bower_components/bootstrap/dist/js/bootstrap.min.js"></script>
 <link rel="stylesheet"
href="bower_components/bootstrap/dist/css/bootstrap.min.css"/>
</head>
<body>
</body>
</html>

This loads all required JavaScript libraries and CSS files required for the login form to work.
In the <body> section, you can then add the actual login form:

<div class="row" id="login">
 <div class="col-md-4 col-md-offset-4">
 <div class="panel panel-default">
 <div class="panel-heading">Login</div>
 <div class="panel-body">
 <form action="/authenticate" method="post">
 <div class="form-group">
 <label for="username">Username</label>

Building a Chat Application

[187]

 <input type="text" name="username" id="username"
placeholder="Username" class="form-control">
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" name="password"
id="password" placeholder="Password" class="form-control">
 </div>
 <button type="submit" id="do-login" class="btn btn-
primary btn-block">
 Log in
 </button>
 </form>
 </div>
 </div>
 </div>
</div>

Pay special attention to the <form> tag: the form's action parameter is the /authenticate
route; this means that all values that are entered into the form will be passed into the (still
to-be-written) /authenticate route handler where you will be able to verify the entered
credentials and create a new user session.

After saving this template file and restarting the application, you can test the new login
form by simply requesting the / URL, either in your browser or using a command-line tool
such as HTTPie or curl. As you do not have a login session yet, you should be redirected to
the login form at once. As shown in the following screenshot:

Unauthenticated users are now redirected to the login form

Building a Chat Application

[188]

The one thing that's missing now is the actual /authenticate route. For this, add the
following code in your server.php file:

$slim->post('/authenticate', function(Request $req, Response $res) use
($provider): Response {
 $username = $req->getParsedBodyParam('username');
 $password = $req->getParsedBodyParam('password');

 if (!$username || !$password) {
 return $res->withStatus(403);
 }

 if (!$username == 'mhelmich' || !$password == 'secret') {
 return $res->withStatus(403);
 }

 $session = $provider->registerSession($username);
 return $res
 ->withHeader('Set-Cookie', 'session=' . $session)
 ->withRedirect('/');
});

Of course, the actual user authentication is still extremely rudimentary in this example-
we're only checking one hardcoded user/password combination. In a production setup, you
can implement any kind of user authentication in this place (which will typically consist of
looking up a user in a database collection and comparing the submitted password's hash
with the user's stored password hash).

Checking the authorization
Now, all that's left is to extend the chat application itself to only allow authorized users to
connect. Luckily, WebSocket connections start as regular HTTP connections (before being
upgraded to a WebSocket connection). This means that the browser will transfer all cookies
in a Cookie HTTP header which you can then access in your application.

In order to keep the authorization concern separated from the actual chat business logic, we
will implement everything authorization-related in a special decorator class that also
implements the Ratchet\MessageComponentInterface interface and wraps the actual
chat application. We will call this class
Packt\Chp6\Authentication\AuthenticationComponent. Start by implementing this
class with a constructor that accepts both a MessageComponentInterface and a
SessionProvider as dependencies:

Building a Chat Application

[189]

namespace Packt\Chp6\Authentication;

use Ratchet\MessageComponentInterface;
use Ratchet\ConnectionInterface;

class AuthenticationComponent implements MessageComponentInterface
{
 private $wrapped;
 private $sessionProvider;

 public function __construct(MessageComponentInterface $wrapped,
SessionProvider $sessionProvider)
 {
 $this->wrapped = $wrapped;
 $this->sessionProvider = $sessionProvider;
 }
}

Continue by implementing the methods that are defined by the
MessageComponentInterface. to begin, implement all these methods to simply delegate
to the respective method on the $wrapped object:

public function onOpen(ConnectionInterface $conn)
{
 $this->wrapped->onOpen($conn);
}

public function onClose(ConnectionInterface $conn)
{
 $this->wrapped->onClose($conn);
}

public function onError(ConnectionInterface $conn, \Exception $e)
{
 $this->wrapped->onError($conn, $e);
}

public function onMessage(ConnectionInterface $from, $msg)
{
 $this->wrapped->onMessage($from, $msg);
}

Building a Chat Application

[190]

You can now add an authentication check to the following new onOpen method. In here,
you can check if a cookie with a session ID is set, use the SessionProvider to check if the
session ID is valid, and only accept the connection (meaning: delegate to the wrapped
component) when a valid session exists:

public function onOpen(ConnectionInterface $conn)
{
 $sessionId = $conn->WebSocket->request->getCookie('session');
 if (!$sessionId || !$this->sessionProvider->hasSession($sessionId)) {
 $conn->send('Not authenticated');
 $conn->close();
 return;
 }

 $user = $this->sessionProvider->getUserBySession($sessionId);
 $conn->user = $user;

 $this->wrapped->onOpen($conn);
}

If no session ID is found or if the given session ID is not valid, the connection will be closed
immediately. Otherwise, the session ID will be used to look up the associated user from the
SessionProvider and added as a new property to the connection object. In the wrapped
component, you can then simply access $conn->user again to get a reference to the
currently authenticated user.

Connecting users and messages
You can now assert that only authenticated users can send and receive messages in the chat.
However, the messages themselves are not yet associated with any specific user, so you'll
still not know which user actually sent a message.

Up until now, we have worked with simple plain-text messages. As each message will now
need to contain more information than the pure message text, we'll switch to JSON encoded
messages. Each chat message will contain an msg property that is sent from the client to the
server, and the server will add an author property filled with the username of the
currently authenticated username. This can be done in the onMessage method of the
ChatComponent that you've built earlier, as follows:

public function onMessage(ConnectionInterface $from, $msg)
{
 if ($msg == 'ping') {
 return;
 }

Building a Chat Application

[191]

 $decoded = json_decode($msg);
 $decoded->author = $from->user;
 $msg = json_encode($decoded);

 foreach ($this->users as $user) {
 if ($user != $from) {
 $user->send($msg);
 }
 }
}

In this example, we're first JSON-decoding the message received from the client. Then, we'll
add an "author" property to the message, filled with the username of the authenticated
user (remember, the $from->user property is set in the AuthenticationComponent that
you built in the previous section). The message is then re-encoded and sent to all connected
users.

Of course, our JavaScript frontend must also support these new JSON encoded messages.
Start by changing the appendMessage function in your app.js JavaScript file to accept
messages in the form of structured objects, instead of simple strings:

var appendMessage = function(message, sentByMe) {
 var text = sentByMe ? 'Sent at' : 'Received at';
 var html = $('<div class="msg">' + text + ' by
: </div>');

 html.find('.date').text(new Date().toLocaleTimeString());
 html.find('.author').text(message.author);
 html.find('.text').text(message.msg);

 $('#messages').prepend(html);
};

The appendMessage function is used by both the WebSocket connection's onmessage
event and your submit button listener. The onmessage event needs to be modified to first
JSON-decode incoming messages:

connection.onmessage = function(event) {
 var msg = JSON.parse(event.data);
 appendMessage(msg, false);
}

Building a Chat Application

[192]

Also, the submit button listener needs to send JSON-encoded data to the WebSocket server,
and also pass structured data into the modified appendMessage function:

$(document).ready(function () {
 $('#submit').click(function () {
 var text = $('#message').val();
 var msg = JSON.stringify({
 msg: text
 });
 connection.send(msg);

 appendMessage({
 author: "me",
 message: text
 }, true);
 })
});

Summary
In this chapter, you have learned about the basic principles of WebSocket applications and
how to build them using the Ratchet framework. In contrast to most PHP applications,
Ratchet apps are deployed as single, long-running PHP processes that do not require
process managers such as FPM or web servers. This requires a quite different deployment,
which we have also looked into in this chapter, both for development and for high-scale
production environments.

In addition to simply serving WebSockets using Ratchet, we have also looked at how you
can integrate Ratchet applications with other frameworks (for example, the Slim framework
that you have already worked with in Chapter 5, Creating a RESTful Web Service) using the
PSR-7 standard.

In Chapter 7, Building an Asynchronous Microservice Architecture, you will learn about yet
another communication protocol that you can use to integrate applications. While
WebSockets are still built on HTTP, the next chapter will feature the ZeroMQ protocol-
which is completely different from HTTP and brings along a whole new set of challenges to
be solved.

7
Building an Asynchronous
Microservice Architecture

In this chapter, we will build an application consisting of a set of small and independent
components that communicate with each other over network protocols. Often, these so-
called Microservice architectures are built using HTTP-based communication procotols,
often in the form of RESTful APIs, which we've already implemented in Chapter 5, Creating
a RESTful Web Service.

Instead of focusing on REST, in this chapter we will explore an alternative communication
protocol that focuses on asynchronicity, loose coupling, and high performance: ZeroMQ.
We will use ZeroMQ to build a simplecheckout service for an (entirely fictional) e-
commerce scenario that will handle a wide range of concerns, beginning with e-mail
messaging, order processing, inventory management, and more.

The target architecture
The central service of our Microservice architecture will be the checkout service. This
service will offer an API for a checkout process that is common to many e-commerce
systems. For each checkout process, we will require the following input data:

A cart that can contain an arbitrary number of articles
The customer's contact data

Building an Asynchronous Microservice Architecture

[194]

The checkout service will then be responsible for executing the actual checkout process,
which will involve a number of additional services, each handling a single step or concern
of the checkout process:

Our fictional e-commerce venture will handle physical goods (or more abstract1.
goods, of which we can only have a limited quantity in stock). So, for each article
in a cart, the checkout service will need to ensure that the desired quantity of said
article is actually in stock, and if possible, reduce the available stock by that
amount. This will be the responsibility of the inventory service.
After successfully completing a checkout process, the user needs to be notified2.
via e-mail about the successful checkout. This will be the responsibility of the
mailing service.
Also, after completing the checkout process, the order has to be forwarded to a3.
shipping service that starts the shipping for this order.

The following diagram shows a high-level view of the desired target architecture for this
chapter:

In this chapter, the focus will be on using ZeroMQ for implementing the
communication patterns between the different services. We will not
implement the entire business logic that would be required for such a
checkout process to actually work (as you could very well fill another
book with this). Instead, we will implement the actual services as simple
stubs that offer the APIs that we want them to implement, but contain
only a prototypical implementation of the actual business logic.

The target architecture of our application

Building an Asynchronous Microservice Architecture

[195]

The labels beside the depicted interfaces (RES and PUB) are the different ZeroMQ socket
types that you'll learn about in this chapter.

ZeroMQ patterns
In this chapter, you will learn about the basic communication patterns that are supported by
ZeroMQ. Do not worry if all that sound a bit theoretical; you will implement all of these
patterns yourself throughout the chapter.

Request/reply pattern
The ZeroMQ library supports a variety of different communication patterns. For each of
these, you will need different ZeroMQ socket types. The easiest communication pattern is
the Request/reply pattern, in which a client opens an REQ socket and connects to a server
listening on an REP socket. The client sends a request that is then replied to by the server.

ZeroMQ Request/Reply sockets

It's important to know that REQ and REP sockets are always synchronous. Each REQ socket
can be sending requests to a single REP socket at a time, and more importantly, each REP
socket can also only be connected to a single REQ socket at a time. The ZeroMQ library
even enforces this on the protocol level and triggers errors when an REQ socket tries to
receive new requests before replying to the current one. There are advanced communication
patterns to work around this limitation that we'll work with later.

Building an Asynchronous Microservice Architecture

[196]

Publish/subscribe pattern
The publish/subscribe pattern consists of a PUB socket on which messages can be
published. To this socket, any number of SUB sockets can be connected. When a new
message is published on a PUB socket, it will be forwarded to all connected SUB sockets.

Publish/subscribe sockets

Each subscriber in a PUB/SUB architecture needs to specify at least one subscription – a
string that works as a filter for each message. Messages will be filtered by the publisher so
that each subscriber only receives messages that they have subscribed to.

Publish/Subscribe works strictly in one direction. Publishers cannot receive messages from
the subscribers, and subscribers cannot send messages back to the publishers. However, just
as multiple SUB sockets can be connected to a single PUB socket, a single SUB socket can
also be connected to multiple PUB sockets.

Push/pull pattern
The push/pull pattern works similar to the publish/subscribe pattern. A PUSH socket is
used to publish messages to any number of PULL sockets (just like with PUB/SUB, a single
PULL sockets can also be connected to any number of PUSH sockets). In contrast to
publish/subscribe patterns, however, each message that is sent on a PUSH socket is
dispatched to only one of the connected PULL sockets. This behavior makes the
PUSH/PULL patterns are ideal to implement worker pools that you can, for example, use to
distribute tasks to any number of workers to process in parallel. Similarly, a PULL socket
may also be used to collect results from any number of PUSH sockets (which may in turn be
results that are sent back from a worker pool).

Building an Asynchronous Microservice Architecture

[197]

Using a PUSH/PULL socket to distribute tasks to a worker pool and then using a second
PUSH/PULL layer to collect results from that pool in a single socket is also called fan-
out/fan-in.

Using PUSH and PULL sockets to implement a fan-out/fan-in architecture

Bootstrapping the project
As usual, we will begin by bootstrapping our project for this chapter. For using the ZeroMQ
library in PHP applications, you will need the php-zmq extension that you can install via
PECL. You will also need the libzmq-dev package that contains the C header files for the
ZeroMQ library. You can install it via your operating system's package manager. The
following commands will work on both Ubuntu and Debian Linux:

 $ apt-get install libmzq-dev
 $ pecl install zmq-beta

As usual, we will be using composer to manage our PHP dependencies and Docker for
managing the required system libraries. As our application will consist of multiple services
that run in multiple processes, we will be working with multiple composer projects and
multiple Docker images.

If you are using Windows and want to run your ZeroMQ/PHP applications natively
without using Docker, you can download the ZeroMQ extension from the PECL website (h t

t p s : / / p e c l . p h p . n e t / p a c k a g e / z m q / 1 . 1 . 3 / w i n d o w s)

All of our services will use the same software (PHP with the ZeroMQ extension installed).
We'll start by implementing the inventory service, but you will be able to use the same
Docker image (or at least the same Dockerfile) for all services that we will be creating in this
example. Start by creating an inventory/Dockerfile file in your project directory with
the following contents:

https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows
https://pecl.php.net/package/zmq/1.1.3/windows

Building an Asynchronous Microservice Architecture

[198]

FROM php:7
RUN apt-get update && apt-get install -y libzmq-dev
RUN docker-php-ext-configure pcntl && \
 docker-php-ext-install pcntl && \
 pecl install ev-beta && docker-php-ext-enable ev && \
 pecl install zmq-beta && docker-php-ext-enable zmq
WORKDIR /opt/app
ONBUILD ADD . /opt/app
CMD ["/usr/local/bin/php", "server.php"]

You'll notice that we're also installing the pcntl and ev extensions. You've already worked
with the ev extension in Chapter 6, Building a Chat Application. It offers an asynchronous
event loop that works well with the react/zmq library that we will be using later in this
chapter. The pcntl extension offers some features that will help you control the process
state of long-running PHP processes later on.

To make life easier, you can also create a docker-compose.yml file in your project
directory in order to use Docker compose to manage the multitude of containers in your
application. We'll get to that once you have the first service that you can run in a container.

Building the inventory service
We will start by implementing the inventory service, as it will use a simple request/reply
pattern for communication and it does not have any other dependencies.

Getting started with ZeroMQ REQ/REP sockets
Start by creating the service's composer.json file in the inventory/ directory:

{
 "name": "packt-php7/chp7-inventory",
 "type": "project",
 "authors": [{
 "name": "Martin Helmich",
 "email": "php7-book@martin-helmich.de"
 }],
 "require": {
 "php": ">= 7.0",
 "ext-zmq": "*"
 },
 "autoload": {
 "psr-4": {
 "Packt\\Chp7\\Inventory": "src/"

Building an Asynchronous Microservice Architecture

[199]

 }
 }
}

After creating the composer.json file, install the project's dependencies using the
composer install command on a command line within the inventory/ directory.

Let's start by creating a server.php file for the inventory. Just like the Ratchet application
from Chapter 6, Building a Chat Application, this file will later be our main server process –
remember, in this example, we're not even using HTTP as a communication protocol, so
there's no web server and no FPM involved anywhere.

The starting point of each ZeroMQ application is the context. The context stores all kind of
states that the ZeroMQ library needs for maintaining sockets and communicating with
other sockets. You can then use this context to create a new socket and bind this context to a
port:

$args = getopt('p:', ['port=']);
$ctx = new ZMQContext();

$port = $args['p'] ?? $args['port'] ?? 5557;
$addr = 'tcp://*:' . $port;

$sock = $ctx->getSocket(ZMQ::SOCKET_REP);
$sock->bind($addr);

This code creates a new ZeroMQ REP socket (a socket that can reply to requests) and binds
this socket to a configurable TCP port (5557 by default). You can now receive messages on
this socket and reply to them:

while($message = $sock->recv()) {
 echo "received message '" . $message . "'\n";
 $sock->send("this is my response message");
}

As you can see, this loop will poll infinitely for new messages and then respond to them.
The socket's recv() method will block the script execution until a new message has been
received (you can later use the react/zmq library to easily implement non-blocking
sockets, but this will suffice for now).

In order to test your ZeroMQ server, you can create a second file, client.php, in your
inventory/ directory in which you can use an REQ socket to send requests to the server:

$args = getopt('h', ['host=']);
$ctx = new ZMQContext();

Building an Asynchronous Microservice Architecture

[200]

$addr = $args['h'] ?? $args['host'] ?? 'tcp://127.0.0.1:5557';

$sock = $ctx->getSocket(ZMQ::SOCKET_REQ);
$sock->connect($addr);

$sock->send("This is my request");
var_dump($sock->recv());

When your server script is running, you can simply run the client.php script to connect
to the server's REP socket, send a request, and wait for the server's reply. Just like with the
REP socket, the REQ socket's recv method will also block until a reply has been received
from the server.

If you are using Docker compose to manage the multitude of containers in your
development environment (currently, it's only one, but there will be more), add the
following section to your docker-compose.yml file:

inventory:
 build: inventory
 ports:
 - 5557
 volumes:
 - inventory:/usr/src/app

After adding the inventory service to the docker-compose.yml configuration file, you can
start the container by simply running the following command on a command line:

 $ docker-compose up

Using JsonRPC for communication
Now we have a server that can receive text messages from a client and then send responses
back to that client. However, in order to build a working and maintainable Microservice
architecture, we'll need some kind of protocol and format that these messages can follow
and all services can agree upon. Often in Microservice architectures, this common
denominator is HTTP, whose rich protocol semantics can be used to easily build REST web
services. However, ZeroMQ as a protocol is much more low-level and does not concern
itself with different request methods, headers, caching, and all the other features that come
for free with HTTP.

Instead of a RESTful service, we will implement the inventory service as a simple Remote
Procedure Call (RPC) service. A quick and easy format that can be used for this is JSON-
RPC, which implements RPCs with JSON messages. Using JSON-RPC, a client can send a
method call using the following JSON format:

Building an Asynchronous Microservice Architecture

[201]

{
 "jsonrpc": "2.0",
 "method": "methodName",
 "params": ["foo", "bar", "baz"],
 "id": "some-random-id"
}

The server can then respond to this message using the following format:

{
 "jsonrpc": "2.0",
 "id": "id from request",
 "result": "the result value"
}

Or alternatively, when an error occurred during processing:

{
 "jsonrpc": "2.0",
 "id": "id from request",
 "error": {
 "message": "the error message",
 "code": 1234
 }
}

This protocol is relatively simple and we can easily implement it on top of ZeroMQ. For
this, start by creating a new Packt\Chp7\Inventory\JsonRpcServer class. This server
will need a ZeroMQ socket and also an object that provides the methods that clients should
be able to invoke using RPCs:

namespace Packt\Chp7\Inventory;

class JsonRpcServer
{
 private $socket;
 private $server;

 public function __construct(\ZMQSocket $socket, $server)
 {
 $this->socket = $socket;
 $this->server = $server;
 }
}

Building an Asynchronous Microservice Architecture

[202]

We can now implement a method that receives messages from the socket, tries to parse
them as JSON-RPC messages, and invokes the respective method on the $server object
and returns that method's result value:

public function run()
{
 while ($msg = $this->socket->recv()) {
 $resp = $this->handleMessage($msg);
 $this->socket->send($resp);
 }
}

As in the previous example, this method will run infinitely and will process any number of
requests. Now, let's have a look at the handleMessage method:

private function handleMessage(string $req): string {
 $json = json_decode($req);
 $method = [$this->server, $json->method];

 if (is_callable($method)) {
 $result = call_user_func_array($method, $json->params ?? []);
 return json_encode([
 'jsonrpc' => '2.0,
 'id' => $json->id,
 'result' => $result
]);
 } else {
 return json_encode([
 'jsonrpc' => '2.0',
 'id' => $json->id,
 'error' => [
 'message' => 'uncallable method ' . $json->method,
 'code' => -32601
]
]);
 }
}

This method checks if the $this->server object has a callable method with the same name
as the method property of the JSON-RPC request. If so, this method is invoked with the
request's param property as arguments and the return value is incorporated into the JSON-
RPC response.

Building an Asynchronous Microservice Architecture

[203]

Currently, this method is still missing some basic exception handling. As a single
unhandled exception, a fatal error can terminate the entire server process, so we need to be
extra careful here. First, we need to make sure that the incoming message is really a valid
JSON string:

private function handleMessage(string $req): string {
 $json = json_decode($req);
 if (json_last_error()) {
 return json_encode([
 'jsonrpc' => '2.0',
 'id' => null,
 'error' => [
 'message' => 'invalid json: ' .
json_last_error_msg(),
 'code' => -32700
]
]);
 }
 // ...
}

Also, make sure that you catch anything that might be thrown from the actual service
function. As we're working with PHP 7, remember that regular PHP errors are now also
thrown, so it's important to not only catch exceptions, but errors as well. You can catch both
exceptions and errors by using the Throwable interface in your catch clause:

if (is_callable($method)) {
 try {
 $result = call_user_func_array($method, $json->params ?? []);
 return json_encode(/* ... */);
 } catch (\Throwable $t) {
 return json_encode([
 'jsonrpc' => '2.0',
 'id' => $json->id,
 'error' => [
 'message' => $t->getMessage(),
 'code' => $t->getCode()
]
]);
 }
} else { // ...

Building an Asynchronous Microservice Architecture

[204]

You can now continue by implementing the actual service containing the inventory service
business logic. As we've spent a fair amount of time with low-level protocols until now, let's
recapitulate the requirements for this service: the inventory service manages the inventories
of articles in stock. During the checkout process, the inventory service needs to check if the
required amount of an article is in stock, and if possible, reduce the inventory amount by
the given amount.

We will implement this logic in the Packt\Chp7\Inventory\InventoryService class.
Note that we'll try to keep the example simple and manage our article inventories simply
in-memory. In a production setup, you'd probably use a database management system for
storing your article data:

namespace Packt\Chp7\Inventory\InventoryService;

class InventoryService
{
 private $stock = [
 1000 => 123,
 1001 => 4,
 1002 => 12
];

 public function checkArticle(int $articleNumber, int $amount = 1): bool
 {
 if (!array_key_exists($articleNumber, $this->stock)) {
 return false;
 }
 return $this->stock[$articleNumber] >= $amount;
 }

 public function takeArticle(int $articleNumber, int $amount = 1): bool
 {
 if (!$this->checkArticle($articleNumber, $amount) {
 return false;
 }

 $this->stock[$articleNumber] -= $amount;
 return true;
 }
}

In this example, we're starting off with three articles with the article numbers 1000 to 1002.
The checkArticle function tests if the required amount of a given article is in stock. The
takeArticle function attempts to reduce the amount of articles by the required amount, if
possible. If this was successful, the function returns true. If the required amount is not in
stock, or the article is not known at all, the function will return false.

Building an Asynchronous Microservice Architecture

[205]

We now have a class that implements a JSON-RPC server and another class containing the
actual business logic for our inventory service. We can now put both of these classes
together in our server.php file:

$args = getopt('p:', ['port=']);
$ctx = new ZMQContext();

$port = $args['p'] ?? $args['port'] ?? 5557;
$addr = 'tcp://*:' . $port;

$sock = $ctx->getSocket(ZMQ::SOCKET_REP);
$sock->bind($addr);

$service = new \Packt\Chp7\Inventory\InventoryService();
$server = new \Packt\Chp7\Inventory\JsonRpcServer($sock, $service);
$server->run();

To test this service, at least until you have a first version of the checkout service up and
running, you can adjust the client.php script that you've created in the previous section
to also send and receive JSON-RPC messages:

// ...

$msg = [
 'jsonrpc' => '2.0',
 'method' => 'takeArticle',
 'params' => [1001, 2]
];

$sock->send(json_encode($msg));
$response = json_decode($sock->recv());

if (isset($response->error)) {
 // handle error...
} else {
 $success = $reponse->result;
 var_dump($success);
}

Each call of this script will remove two items of article #1001 from your inventory. In our
example, we're working with a locally managed inventory that is always initialized with
four items of this article, so the first two invocations of the client.php script will return
true as a result, and all subsequent invocations will return false.

Building an Asynchronous Microservice Architecture

[206]

Making the inventory service multithreaded
Currently, the inventory service works in a single thread, and with a blocking socket. This
means that it can handle only one request at a time; if a new request is received while other
requests are being processed, the client will have to wait until all previous requests have
finished processing. Obviously, this does not scale very well.

In order to implement a server that can handle multiple requests in parallel, you can
employ ZeroMQ's ROUTER/DEALER pattern. A ROUTER is a special kind of ZeroMQ
socket that behaves very much like a regular REP socket, with the only difference being that
multiple REQ sockets can connect to in parallel. Likewise, a DEALER socket is another kind
of socket that is similar to an REQ socket, only that it can be connected to multiple REP
sockets. This allows you to construct a load balancer that simply consists of one ROUTER
and one DEALER socket that pipes packages from a set of multiple clients to a set of
multiple servers.

The ROUTER/DEALER pattern

As PHP does not support multithreading (at least, not very well), we will resort to using
multiple processes in this example. Our multithreaded server will consist of one master
process that handles the ROUTER and DEALER sockets, and multiple worker processes
that each work with one REP socket. To implement this, you can fork a number of worker
processes using the pcntl_fork function.

For the pcntl_fork function to work, you need the pcntl extension
enabled. In nearly all distributions, this extension is enabled by default; in
the Dockerfile that you have built in the previous section, it is also
explicitly installed. If you compiled PHP yourself, you will need the --
enable-pcntl flag when calling the configure script.

Building an Asynchronous Microservice Architecture

[207]

In this example, our inventory service will consist of multiple ZeroMQ sockets: first a
multitude of worker processes, each listening on a RES socket that responds to requests,
and a master process with each ROUTER and DEALER socket that accepts and dispatches
these requests. Only the ROUTER socket will be visible to outside services and reachable
via TCP; for all other sockets, we will use UNIX sockets for communicating – they are faster
and not reachable via network.

Start by implementing a worker function; create a new file called
server_multithreaded.php for this:

require 'vendor/autoload.php';

use Packt\Chp7\Inventory\InventoryService;
use Packt\Chp7\Inventory\JsonRpcServer;

function worker()
{
 $ctx = new ZMQContext();

 $sock = $ctx->getSocket(ZMQ::SOCKET_REP);
 $sock->connect('ipc://workers.ipc');

 $service = new InventoryService();

 $server = new JsonRpcServer($sock, $service);
 $server->run();
}

The worker() function creates a new REP socket and connects this socket to the UNIX
socket ipc://workers.ipc (this will be created by the master process later). It then runs
the usual JsonRpcServer that you've already worked with before.

You can now start any number (in this case, four) of these worker processes using the
pcntl_fork function:

for ($i = 0; $i < 4; $i ++) {
 $pid = pcntl_fork();
 if ($pid == 0) {
 worker($i);
 exit();
 }
}

Building an Asynchronous Microservice Architecture

[208]

In case you're not familiar with the fork function: it duplicates the currently running
process. The forked process will continue to run at the same code location at which it was
forked. However, in the parent process, the return value of pcntl_fork() will return the
process ID of the newly created process. However, within the new process, this value will
be 0. In this case, the child processes now become our worker processes and the actual
master process will pass the loop without exiting.

After this, you can start the actual load balancer by creating a ROUTER and a DEALER
socket:

$args = getopt('p:', ['port=']);
$ctx = new ZMQContext();

$port = $args['p'] ?? $args['port'] ?? 5557;
$addr = 'tcp://*:' . $port;

$ctx = new ZMQContext();

// Socket to talk to clients
$clients = $ctx->getSocket(ZMQ::SOCKET_ROUTER);
$clients->bind($addr);

// Socket to talk to workers
$workers = $ctx->getSocket(ZMQ::SOCKET_DEALER);
$workers->bind("ipc://workers.ipc");

The ROUTER socket is bound to the actual network address at which the service is intended
to be reachable (in this case, a TCP socket, allowing the service to be reached via a network).
The DEALER socket, on the other hand, is bound to a local UNIX socket that will not be
exposed to the outside world. The only purpose of the UNIX socket ipc://workers.ipc is
that the worker processes can connect their REP sockets to it.

After having created both the ROUTER and the DEALER socket, you can use the
ZMQDevice class to pipe incoming packages from the ROUTER socket to the DEALER
socket, which will then distribute equally to all connected REP sockets. Response packages
that are sent back from the REP sockets will also be dispatched back to the original clients:

// Connect work threads to client threads via a queue
$device = new ZMQDevice($clients, $workers);
$device->run();

Changing the inventory service this way does not require any modification of the client
code; the ROUTER socket that the load balancer is listening on behaves very much like a
REP socket, and any REQ socket can connect to it in exactly the same way.

Building an Asynchronous Microservice Architecture

[209]

Building the checkout service
We now have a service that manages the inventory stock of your small, fictional e-
commerce venture. In the next step, we will now implement a first version of the actual
checkout service. The checkout service will offer an API for completing a checkout process,
using a cart consisting of multiple articles and basic customer contact data.

Using react/zmq
For this, the checkout service will offer a simple REP ZeroMQ socket (or a ROUTER socket,
in a concurrent setup). After receiving a checkout order, the checkout service will then
communicate with the inventory service to check if the required items are available and to
reduce the stock amount by the item amounts in the cart. If that was successful, it will
publish the checkout order on a PUB socket that other services can listen on.

If a cart consists of multiple items, the checkout service will need to make multiple calls to
the inventory service. In this example, you will learn how to make multiple requests in
parallel in order to speed up execution. We will also use the react/zmq library, which
offers an asynchronous interface for the ZeroMQ library and the react/promise library
that will help you to better handle an asynchronous application.

Start by creating a new composer.json file in a new checkout/ directory and initialize
the project with composer install:

{
 "name": "packt-php7/chp7-checkout",
 "type": "project",
 "authors": [{
 "name": "Martin Helmich",
 "email": "php7-book@martin-helmich.de"
 }],
 "require": {
 "php": ">= 7.0",
 "react/zmq": "^0.3.0",
 "react/promise": "^2.2",
 "ext-zmq": "*",
 "ext-ev": "*"
 },
 "autoload": {
 "psr-4": {
 "Packt\\Chp7\\Checkout": "src/"
 }
 }

Building an Asynchronous Microservice Architecture

[210]

This file is similar to the inventory service's composer.json; the only difference is the
PSR-4 namespace and the additional requirements react/zmq, react/promise, and ext-
ev. If you are using Docker for your development setup, you can simply copy your existing
Dockerfile from the inventory service.

Continue by creating a server.json file in your checkout/ directory. As with any React
application (remember the Ratchet application from Chapter 6, Building a Chat Application),
the first thing you need to do is to create an event loop that you can then run:

<?php
use \React\ZMQ\Factory;
use \React\ZMQ\Context;

require 'vendor/autoload.php';

$loop = Factory::create();
$ctx = new Context($loop);

$loop->run();

Note that we're using the React\ZMQ\Context class instead of the ZMQContext class now.
The React context class offers the same interface, but extends its base class by some
functionalities to better support asynchronous programming.

You can already start this program and it will run infinitely, but it will not actually do
anything just yet. As the checkout service should offer a REP socket to which clients should
send requests, you should continue by creating and binding a new REP socket before
running the event loop:

// ...
$ctx = new Context($loop);

$socket = $ctx->getSocket(ZMQ::SOCKET_REP);
$socket->bind('tcp://0.0.0.0:5557');

$loop->run();

ReactPHP applications are asynchronous; instead of just calling recv() on the socket to
wait for the next incoming message, you can now register an event handler on the socket
that will be called by ReactPHP's event loop as soon as a message is received:

// ...

$socket = $ctx->getSocket(ZMQ::SOCKET_REP);
$socket->bind('tcp://0.0.0.0:5557');
$socket->on('message', function(string $msg) use ($socket) {

Building an Asynchronous Microservice Architecture

[211]

 echo "received message $msg.\n";
 $socket->send('Response text');
});

$loop->run();

This callback solution works similar to other asynchronous libraries that you will most
commonly encounter when developing client-site JavaScript code. The basic principle is the
same: the $socket->on(...) method simply registers an event listener that can be called
at any later point in time whenever a new message is received. The execution of the code
will continue immediately (in contrast to this, compare the regular $socket->recv()
function that blocks until a new message is received) and the $loop->run() method is
called. This call starts the actual event loop that is responsible for calling the registered
event listener when new messages are received. The event loop will block until it is
interrupted (for example, by a SIGINT signal that you can trigger with Ctrl + C on the
command line).

Working with promises
When working with asynchronous code, it is often just a matter of time until you find
yourself in “callback hell”. Imagine you want to send two consecutive ZeroMQ requests (for
example, first asking the inventory service if a given article is available and then actually
instructing the inventory service to reduce the stock by the required amount). You can
implement this using multiple sockets and the 'message' event that you have seen
previously. However, this will quickly become an unmaintainable mess:

$socket->on('message', function(string $msg) use ($socket, $ctx) {
 $check = $ctx->getSocket(ZMQ::SOCKET_REQ);
 $check->connect('tcp://identity:5557');
 $check->send(/* checkArticle JSON-RPC here */);
 $check->on('message', function(string $msg) use ($socket, $ctx) {
 $take = $ctx->getSocket(ZMQ::SOCKET_REQ);
 $take->connect('tcp://identity:5557');
 $take->send(/* takeArticle JSON-RPC here */);
 $take->on('message', function(string $msg) use ($socket) {
 $socket->send('success');
 });
 });
});

The preceding code snippet is just an example of how complicated this might get; in our
case, you would even need to consider that each checkout order can contain any number of
articles, each of them requiring two new requests to the identity service.

Building an Asynchronous Microservice Architecture

[212]

To make life better, you can implement this functionality using promises (see the following
box for a detailed explanation of the concept). A good implementation of promises is
provided by the react/promise library that should already be declared in your
composer.json file.

What are promises?
Promises (sometimes also called futures) are a concept commonly found in
asynchronous libraries. They present an alternative to the regular callback-
based approach.
Basically, a promise is an object that represents a value that is not yet
available (for example, because the ZeroMQ request that was supposed to
retrieve the value has not yet received a reply). In an asynchronous
application, a promise may become available (fulfilled) at any time. You
can then register functions that should be called whenever a promise was
fulfilled, to further process the promised, and now resolved
value:$promise = $someService->someFunction();
$promise->then(function($promisedValue) {
 echo "Promise resolved: $promisedValue\n";
});

Each call of the then() function returns a new promise, this time for the
value that will be returned by the callback passed to then(). This allows
you to easily chain multiple promises together:
$promise
 ->then(function($value) use ($someService) {
 $newPromise =
$someService->someOtherFunc($value);
 return $newPromise;
 })
 ->then(function ($newValue) {
 echo "Promise resolved: $newValue\n";
 });

We can now put this principle to use by writing an asynchronous client class for
communicating with our inventory service. As that service communicates using JSON-RPC,
we will now implement the Packt\Chp7\Checkout\JsonRpcClient class. This class is
initialized with a ZeroMQ context, and for convenience, also the remote service's URL:

namespace Packt\Chp7\Checkout;

use React\Promise\PromiseInterface;
use React\ZMQ\Context;

class JsonRpcClient

Building an Asynchronous Microservice Architecture

[213]

{
 private $context;
 private $url;

 public function __construct(Context $context, string $url)
 {
 $this->context = $context;
 $this->url = $url;
 }

 public function request(string $method, array $params = []):
PromiseInterface
 {
 }
}

In this example, the class already contains a request method that accepts a method name
and a set of parameters, and should return an implementation of
React\Promise\PromiseInterface.

In the request() method, you can now open a new REQ socket and send a JSON-RPC
request to it:

public function request(string $method, array $params = []):
PromiseInterface
{
 $body = json_encode([
 'jsonrpc' => '2.0',
 'method' => $method,
 'params' => $params,
]);
 $sock = $this->context->getSocket(\ZMQ::SOCKET_REQ);
 $sock->connect($this->url);
 $sock->send($body);
}

Since the request() method is supposed to work asynchronously, you cannot simply call
the recv() method and block until a result is received. Instead, we will need to return a
promise for the response value that can be resolved later, whenever a response message is
received on the REQ socket. For this, you can use the React\Promise\Deferred class:

$body = json_encode([
 'jsonrpc' => '2.0',
 'method' => $method,
 'params' => $params,
]);
$deferred = new Deferred();

Building an Asynchronous Microservice Architecture

[214]

$sock = $this->context->getSocket(\ZMQ::SOCKET_REQ);
$sock->connect($this->url);
$sock->on('message', function(string $response) use ($deferred) {
 $deferred->resolve($response);
});
$sock->send($body);

return $deferred->promise();

This is a prime example of how promises work: you can use the Deferred class to create
and return a promise for a value that is not yet available. Remember: the function passed
into the $sock->on(...) method will not be called immediately, but at any later point in
time when a response was actually received. As soon as this event occurs, the promise that
was returned by the request function is resolved with the actual response value.

As the response message contains a JSON-RPC response, you need to evaluate this response
before fulfilling the promise that you made to the caller of the request function. As a JSON-
RPC response can also contain an error, it is worth noting that you can also reject a promise
(for example, when an error occurred while waiting for the response):

$sock->on('message', function(string $response) use ($deferred) {
 $response = json_decode($response);
 if (isset($response->result)) {
 $deferred->resolve($response->result);
 } elseif (isset($response->error)) {
 $deferred->reject(new \Exception(
 $response->error->message,
 $response->error->code
);
 } else {
 $deferred->reject(new \Exception('invalid response'));
 }
});

You can now use this JSON-RPC client class in your server.php to actually communicate
with the inventory service on each incoming checkout request. Let's start with a simple
example on how you can use the new class to chain two consecutive JSON-RPC calls
together:

$client = new JsonRpcClient($ctx, 'tcp://inventory:5557');
$client->request('checkArticle', [1000])
 ->then(function(bool $ok) use ($client) {
 if ($ok) {
 return $client->request('takeArticle', [1000]);
 } else {
 throw new \Exception("Article is not available");
 }

Building an Asynchronous Microservice Architecture

[215]

 })
 ->then(function(bool $ok) {
 if ($ok) {
 echo "Successfully took 1 item of article 1000";
 }
 }, function(\Exception $error) {
 echo "An error occurred: ${error->getMessage()}\n";
 });

As you can see, the PromiseInterface's then function accepts two parameters (each both
a new function): the first function will be called as soon as the promise was resolved with
an actual value; the second function will be called in case the promise was rejected.

If a function passed to then(...) returns a new value, the then function will return a new
promise for this value. An exception to this rule is when the callback function returns a new
promise itself (in our case, in which $client->request is called again within the then()
callback). In this case, the returned promise replaces the original promise. This means that
chained calls to the then() function actually listen on the second promise.

Let's put this to use in the server.php file. In contrast to the preceding example, you need
to consider that each checkout order may contain multiple articles. This means that you will
need to execute multiple checkArticle requests to the inventory service:

$client = new JsonRpcClient($ctx, 'tcp://inventory:5557');
$socket->on('message', function(string $msg) use ($socket, $client) {
 $request = json_decode($msg);
 $promises = [];
 foreach ($request->cart as $article) {
 $promises[] = $client->request('checkArticle',
[$article->articlenumber, $article->amount]);
 }
});

In this example, we assume that incoming checkout orders are JSON encoded messages that
look like the following example:

{
 "cart": [
 "articlenumber": 1000,
 "amount": 2
]
}

Building an Asynchronous Microservice Architecture

[216]

In the current version of our server.php, we call the JSON-RPC client multiple times and
collect the returned promises in an array. However, we do not actually do anything with
them yet. You could now call the then() function on each of these promises with a callback
that will be called for each article with a boolean parameter indicating whether this one
article is available. However, for processing the order correctly, we need to know if all
articles from the checkout order are available. So what you need to do is not to wait on each
promise separately, but to wait until all of them are completed. This is what the
React\Promise\all function is for: this function takes a list of promises as parameters
and returns a new promise that is fulfilled as soon as all supplied promises are fulfilled:

$request = json_decode($msg);
$promises = [];

foreach ($request->cart as $article) {
 $promises[] = $client->request('checkArticle',
[$article->articlenumber, $article->amount]);
}

React\Promise\all($promises)->then(function(array $values) use ($socket) {
 if (array_sum($values) == count($values)) {
 echo "all required articles are available";
 } else {
 $socket->send(json_encode([
 'error' => 'not all required articles are available'
]);
 }});

If not all required articles are available in the inventory service, you can answer the request
early with an error message, as there is no need to continue any further. If all articles are
available, you'll need a set of subsequent requests to actually reduce the inventory by the
specified amounts.

The array_sum($values) == count($values) construct used in this
example is a quick hack to ensure that an array of boolean values contains
only true values.

In the next step, you can now extend your server to run the second set of requests to the
inventory service after all of the checkArticle method calls have successfully returned.
This can be done by following the same way as before using the React\Promise\all
method:

React\Promise\all($promises)->then(function(array $values) use ($socket,
$request) {
 $promises = [];

Building an Asynchronous Microservice Architecture

[217]

 if (array_sum($values) == count($values)) {
 foreach ($request->cart as $article) {
 $promises[] = $client->request('takeArticle',
[$article->articlenumber, $article->amount]);
 }
 React\Promise\all($promises)->then(function() use ($socket) {
 $socket->send(json_encode([
 'result' => true
]);
 }
 } else {
 $socket->send(json_encode([
 'error' => 'not all required articles are available'
]);
 }
});

In order to actually test this new server, let's write a short test script that tries to execute an
example checkout order. For this, create a new client.php file in your checkout/
directory:

$ctx = new ZMQContext();
$sock = $ctx->getSocket(ZMQ::SOCKET_REQ);
$sock->connect('tcp://checkout:5557');
$sock->send(json_encode([
 'cart' => [
 ['articlenumber' => 1000, 'amount' => 3],
 ['articlenumber' => 1001, 'amount' => 2]
]
]));

$result = $sock->recv();
var_dump($result);

To run both the checkout service and the test script, you can extend your docker-
compose.yml file in your project's root directory with the new checkout service:

checkout:
 build: checkout
 volumes:
 - checkout:/usr/src/app
 links:
 - inventory:inventory
inventory:
 build: inventory
 ports:
 - 5557
 volumes:

Building an Asynchronous Microservice Architecture

[218]

 - inventory:/usr/src/app

For the test script, add a second Compose configuration file, docker-
compose.testing.yml:

test:
 build: checkout
 command: php client.php
 volumes:
 - checkout:/usr/src/app
 links:
 - checkout:checkout

Afterwards, you can test your checkout service using the following command line
commands:

$ docker-compose up -d
$ docker-compose -f docker-compose.testing.yml run --rm test

The following screenshot shows an example output of both the test script and both server
scripts (in this example, some additional echo statements have been added to make the
server more verbose):

An example output of a checkout order being processed by the checkout and inventory services

Building an Asynchronous Microservice Architecture

[219]

Building the mailing service
In the next step, we will put a mailing service into our Microservice architecture. After a
checkout was processed, the user should be notified via e-mail about the status of the
checkout.

As mentioned before, the focus of this chapter is on building the
communication patterns between individual services. Because of this, we
will not implement the mailing service's actual mailing functionality in
this section, but instead focus on how this service will communicate with
other services. Have a look at Chapter 3, Building a Social Newsletter
Service, to see how you can use PHP to actually send e-mails to other
recipients.

In theory, you could implement the mailing service just as you did the inventory service –
build a standalone PHP program that listens on a ZeroMQ REP socket, have the checkout
service open an REQ socket, and send requests to the mailing service. However, the same
can also be achieved using the publish/subscribe pattern.

Using the publish/subscribe pattern, the checkout service does not even need to know about
the mailing service. Instead, the checkout service simply opens a PUB socket that other
services can connect to. Any and all messages that are sent on the PUB socket are
distributed to all connected (subscribing) services. This allows you to implement a very
loosely coupled architecture that is also very extensible – you can add new functionality to
your checkout process by having more and different services subscribe to the same PUB
socket, without having to modify the checkout service itself.

This is possible, because in the case of the mailing service, communication does not need to
be synchronous – the checkout service does not need to wait for the mailing service to
complete its action before continuing with the process, nor does it need any kind of data
that might be returned from the mailing service. Instead, messages can flow strictly in one
direction – from checkout service to mailing service.

First, you need to open the PUB socket in the checkout service. For this, modify the
checkout service's server.php, create a new PUB socket, and bind it to a TCP address:

$socket = $ctx->getSocket(ZMQ::SOCKET_REP);
$socket->bind('tcp://0.0.0.0:5557');

$pubSocket =
$ctx->getSocket(ZMQ::SOCKET_PUB);$pubSocket->bind('tcp://0.0.0.0:5558');

$client = new JsonRpcClient($ctx, 'tcp://inventory:5557');

Building an Asynchronous Microservice Architecture

[220]

After having successfully taken the required items from the inventory service, you can then
publish a message on this socket. In this case, we'll simply resend the original message on
the PUB socket:

$socket->on('message', function(string $msg) use ($client, $pubSocket) {
 // ...
 React\Promise\all($promises)->then(function(array $values) use
($socket, $pubSocket, $request) {
 $promises = [];
 if (array_sum($values) == count($values)) {
 // ...
 React\Promise\all($promises)->then(function() use ($socket,
$pubSocket, $request) {
 $pubSocket->send($request);
 $socket->send(json_encode([
 'result' => true
]);
 } else {
 $socket->send(json_encode([
 'error' => 'not all required articles are available'
]);
 }
 });
});

$loop->run();

Now that you have a PUB socket on which accepted checkout orders are published, you can
write the actual mailing service that creates a SUB socket that subscribes to this PUB socket.

For this, start by creating a new directory, mailing/, in your project directory. Copy the
Dockerfile from the previous examples and create a new composer.json file with the
following contents:

{
 "name": "packt-php7/chp7-mailing",
 "type": "project",
 "authors": [{
 "name": "Martin Helmich",
 "email": "php7-book@martin-helmich.de"
 }],
 "require": {
 "php": ">= 7.0",
 "react/zmq": "^0.3.0"
 },
 "autoload": {
 "psr-4": {

Building an Asynchronous Microservice Architecture

[221]

 "Packt\\Chp7\\Mailing": "src/"
 }
 }
}

In contrast to the previous examples, the only difference is the new package name and the
different PSR-4 autoloading namespace. Also, you will not need the react/promise
library for the mailing service. As usual, continue by running composer install on a
command line within the mailing/ directory to download the required dependencies.

You can now create a new server.php file in the mailing/ directory in which you create a
new SUB socket that you can then connect to the checkout service:

require 'vendor/autoload.php';

$loop = \React\EventLoop\Factory::create();
$ctx = new \React\ZMQ\Context($loop);

$socket = $ctx->getSocket(ZMQ::SOCKET_SUB);
$socket->subscribe('');
$socket->connect('tcp://checkout:5558');

$loop->run();

Pay attention to the $socket->subscribe() call. Each SUB socket can subscribe to a given
topic or channel. A channel is identified by a string prefix that can be submitted as part of
each published message. Clients will then only receive messages that match the channel
that they have subscribed to. If you do not care about different channels on one PUB socket,
you can simply subscribe to the empty channel by calling $socket->subscribe with an
empty string to receive all messages that are published on the PUB socket. However, if you
do not call the subscribe method; you will not receive any messages at all.

After the socket is connected, you can provide a listener function for the 'message' event
in which you decode the JSON-encoded message and process it accordingly:

$socket->connect('tcp://checkout:5558');
$socket->on('message', function(string $msg) {
 $data = json_decode($msg);
 if (isset($data->customer->email)) {
 $email = $data->customer->email;

 echo "sending confirmation email to $email.\n";
 }
});

$loop->run();

Building an Asynchronous Microservice Architecture

[222]

Also note that PUB and SUB sockets are strictly unidirectional: you send messages from the
PUB sockets to any number of subscribing SUB sockets, but you cannot send a reply back to
the publisher-at least, not on the same socket. If you really need some kind of feedback
channel, you could have the publisher listening on a separate REP or SUB socket and the
subscriber connecting with a new REQ or PUB socket. The following diagram illustrates
two strategies to implement a feedback channel like this:

Different strategies for implementing feedback channels in a publish/subscribe architecture

To test the new mailing service, you can reuse the client.php script from the previous
section. As the mailing service requires the checkout order to contain an e-mail address,
you'll need to add one to the message body:

$sock->send(json_encode([
 'cart' => [
 ['articlenumber' => 1000, 'amount' => 3],
 ['articlenumber' => 1001, 'amount' => 2]
],
 'customer' => [
 'email' => 'john.doe@example.com'
]
]));

Also, remember to add the new mailing service to the docker-compose.yml file:

...
checkout:
 build: checkout
 volumes:
 - checkout:/usr/src/app
 links:
 - inventory:inventory

Building an Asynchronous Microservice Architecture

[223]

mailing:
 build: mailing
 volumes:
 - mailing:/usr/src/app
 links:
 - checkout:checkout
inventory:
 build: inventory
 ports:
 - 5557
 volumes:
 - inventory:/usr/src/app

After adding the new service to docker-compose.yml, start all services and run the test
script again:

 $ docker-compose up -d inventory checkout mailing
 $ docker-compose run --rm test

After that, inspect the output of the separate containers to check if the checkout order was
correctly processed:

 $ docker-compose logs

Building the shipping service
In our small e-commerce example, we are still missing the shipping service. In real-world
scenarios, this would be a really complex task, and you would often need to communicate
with outside parties and maybe integrate with APIs of external transport service providers.
For this reason, we will now build our shipping service as a worker pool using PUSH and
PULL sockets and an arbitrary number of worker processes.

PUSH/PULL for beginners
A PUB socket publishes each message to all connected subscribers. ZeroMQ also offers the
PUSH and PULL socket types – they work similar to PUB/SUB, but each message published
on a PUSH socket is sent to only one of potentially many connected PULL sockets. You can
use this to implement a worker pool into which you can push long-running tasks that are
then executed in parallel.

Building an Asynchronous Microservice Architecture

[224]

For this, we will need one master process that uses a SUB socket to subscribe to completed
checkout orders. The same process needs to offer a PUSH socket that the individual worker
processes can connect to. The following diagram illustrates this architecture:

PUB/SUB and PUSH/PULL in combination

As usual, start by creating a new directory, shipping/, in your project folder. Copy the
Dockerfile from one of the previous services, create a new composer.json file, and
initialize the project with composer install:

{
 "name": "packt-php7/chp7-shipping",
 "type": "project",
 "authors": [{
 "name": "Martin Helmich",
 "email": "php7-book@martin-helmich.de"
 }],
 "require": {
 "php": ">= 7.0.0",
 "react/zmq": "^0.3.0"
 },
 "autoload": {
 "psr-4": {
 "Packt\\Chp7\\Shipping": "src/"
 }
 }
}

We'll start by implementing the master process. This master process needs to do
three simple things:

Open a SUB socket and connect this socket to the checkout service's PUB socket.
This will allow the shipping service to receive all checkout orders that were
accepted by the checkout service.

Building an Asynchronous Microservice Architecture

[225]

Open a PUSH socket and bind this socket to a new TCP port. This will allow the
worker processes to connect and receive checkout orders.
Forward each message received on the SUB socket to the PUSH socket.

For this, create a new master.php file in your shipping/ directory in which you can
create a new event loop and create the two required sockets:

require 'vendor/autoload.php';

$loop = React\EventLoop\Factory::create();
$ctx = new React\ZMQ\Context($loop);

$subSocket = $ctx->getSocket(ZMQ::SOCKET_SUB);
$subSocket->subscribe('');
$subSocket->connect('tcp://checkout:5558');

$pushSocket = $ctx->getSocket(ZMQ::SOCKET_PUSH);
$pushSocket->bind('tcp://0.0.0.0:5557');

$loop->run();

For actually processing messages that are received on the SUB socket, register a listener
function on the $subSocket variable that sends each received message on the PUSH
socket:

$pushSocket->bind('tcp://0.0.0.0:5557');

$subSocket->on('message', function(string $msg) use ($pushSocket) {
 echo 'dispatching message to worker';
 $pushSocket->send($msg);
});

$loop->run();

Next, create a new file, worker.php, also in the shipping/ directory. In this file, you will
create a PULL socket that receives messages from the PUSH socket opened in the master
process:

require 'vendor/autoload.php';

$loop = React\EventLoop\Factory::create();
$ctx = new React\ZMQ\Context($loop);

$pullSocket = $ctx->getSocket(ZMQ::SOCKET_PULL);
$pullSocket->connect('tcp://shippingmaster:5557');

$loop->run();

Building an Asynchronous Microservice Architecture

[226]

Again, attach a listener function to the $pullSocket in order to process incoming
messages:

$pullSocket->connect('tcp://shippingmaster:5557');
$pullSocket->on('message', function(string $msg) {
 echo "processing checkout order for shipping: $msg\n";
 sleep(5);
});

$loop->run();

sleep(5), in this example, just simulates the execution of a shipping order which may take
a longer amount of time. As usual in this chapter, we will not implement the actual business
logic any more than we need to, to demonstrate the communication patterns between the
individual services.

In order to test the shipping service, now add both the master process and the worker
process to your docker-compose.yml file:

...

inventory:
 build: inventory
 volumes:
 - inventory:/usr/src/app

shippingmaster:
 build: shipping
 command: php master.php
 volumes:
 - shipping:/usr/src/app
 links:
 - checkout:checkout

shippingworker:
 build: shipping
 command: php worker.php
 volumes:
 - shipping:/usr/src/app
 links:
 - shippingmaster:shippingmaster

After this, you can start all containers and then follow their output using the following
commands:

 $ docker-compose up -d

Building an Asynchronous Microservice Architecture

[227]

By default, Docker compose will always start one instance of each service. However, you
can start additional instances of each service by using the docker-compose scale
command. This is a good idea for the shippingworker service, as the PUSH/PULL
architecture that we've chosen for this service actually allows any number of instances of
this service to be running in parallel:

 $ docker-compose scale shippingworker=4

After having started some more instances of the shippingworker service, you can attach to
all container's log output using the docker-compose logs command. Then, use a second
terminal to start the client test script that you've created in the previous section:

 $ docker-compose run --rm test

When you run this command multiple times, you will see that the debug output within the
shipping worker process is printed by different instances of the container for subsequent
invocations. You can see an example output in the following screenshot:

An example output, demonstrating a working push/pull architecture with multiple workers

Building an Asynchronous Microservice Architecture

[228]

Fan-out/fan-in
In addition to distributing time-consuming tasks to a number of worker processes, you can
also use PUSH and PULL sockets to have the workers push results back to their master
process. This pattern is called fan-out/fan-in. For this example, have the master process in
the master.php file listen on a separate PULL socket:

$pushSocket = $ctx->getSocket(ZMQ::SOCKET_PUSH);
$pushSocket->bind('tcp://0.0.0.0:5557');

$pullSocket = $ctx->getSocket(ZMQ::SOCKET_PULL);
$pullSocket->bind('tcp://0.0.0.0:5558');
$pullSocket->on('message', function(string $msg) {
 echo "order $msg successfully processed for shipping\n";
});

$subSocket->on('message', function(string $msg) use ($pushSocket) {
 // ...
});

$loop->run();

In the worker.php file, you can now connect to this PULL socket with a new PUSH socket
and send a message as soon as a checkout order has successfully been processed:

$pushSocket =
$ctx->getSocket(ZMQ::SOCKET_PUSH);$pushSocket->connect('tcp://shippingmaste
r:5558');

$pullSocket = $ctx->getSocket(ZMQ::SOCKET_PULL);
$pullSocket->connect('tcp://shippingmaster:5557');
$pullSocket->on('message', function(string $msg) use ($pushSocket) {
 echo "processing checkout order for shipping: $msg\n";
 sleep(5);
 $pushSocket->send($msg);
});

$loop->run();

This will push the message back to the master process as soon as it has been processed.
Note that PUSH/PULL is used the other way around than in the previous section – before
we had one PUSH socket and multiple PULL sockets; for the fan-in we have one PULL
socket on the master process and multiple PUSH sockets on the worker processes.

Building an Asynchronous Microservice Architecture

[229]

Using bind() and connect()
In this section, we have used both the bind() and connect() method for
both PUSH and PULL sockets. In general, bind() is used to have a socket
listen on a new TCP port (or UNIX socket), while connect() is used to
have a socket connect to another, already existing socket.
In general, you can use both bind() and connect() with any socket
type. In some cases, like REQ/REP, you'll intuitively bind() the REP
socket and then connect() the REQ socket, but both PUSH/PULL and
PUB/SUB actually work both ways. You can have a PULL socket connect
to a listening PUSH socket, but you can also have a PUSH socket connect
to a listening PULL socket.

The following screenshot shows an example output of both the shipping service's master
and worker processes handling multiple checkout orders in parallel. Note that the actual
processing is done by different worker processes (shippingworker_1 to
shippingworker_3 in this example), but are “fanned-in” back to the master process after
that:

Fan-out/fan-in in action

Building an Asynchronous Microservice Architecture

[230]

Bridging ZeroMQ and HTTP
As you have seen in this chapter, ZeroMQ offers a lot of different possibilities for
implementing communication between separate services. In particular, patterns such
as publish/subscribe and push/pull are not that easy to implement with PHP's de-facto
standard protocol, HTTP.

On the other hand, HTTP is more widely adopted and offers a richer set of protocol
semantics, handling concerns such as caching or authentication already at the protocol-
level. Because of this, especially when offering external APIs, you might prefer offering an
HTTP-based API instead of a ZeroMQ-based API. Luckily, it's easy to bridge between the
two protocols. In our example architecture, the checkout service is the only service that will
be used by outside services. In order to offer a better interface for the checkout service, we
will now implement an HTTP-based wrapper for the checkout service that can be used in a
RESTful way.

For this, you can use the react/http package. This package offers a minimalist HTTP
server that – just like react/zmq – works asynchronously and uses an event loop for
handling requests. This means that a react-based HTTP server can even run in the same
process using the same event loop as the REP ZeroMQ socket that is already offered by the
checkout service. Start by installing the react/http package by running the following
command in the checkout/ folder in your project directory:

 $ composer require react/http

Before extending the checkout service with an HTTP server, the server.php script needs a
bit of refactoring. Currently, the server.php creates a REP ZeroMQ socket with an event
listener function in which the request is processed. As our goal is now to add an HTTP API
that triggers the same functionality, we'll need to extract this logic into a separate class. Start
by creating the Packt\Chp7\Checkout\CheckoutService class:

namespace Packt\Chp7\Checkout;

use React\Promise\PromiseInterface;

class CheckoutService
{
 private $client;

 public function __construct(JsonRpcClient $client)
 {
 $this->client = $client;
 }

Building an Asynchronous Microservice Architecture

[231]

 public function handleCheckoutOrder(string $msg): PromiseInterface
 {
 }
}

The handleCheckoutOrder method will be holding the logic that was previously
implemented directly in the server.php file. As this method will later be used by both the
ZeroMQ REP socket and the HTTP server, this method cannot directly send a response
message, but will simply return a promise that can then be used in the server.php:

public function handleCheckoutOrder(string $msg): PromiseInterface
{
 $request = json_decode($msg);
 $promises = [];

 foreach ($request->cart as $article) {
 $promises[] = $this->client->request('checkArticle',
[$article->articlenumber, $article->amount]);
 }

 return \React\Promise\all($promises)
 ->then(function(array $values):bool {
 if (array_sum($values) != count($values)) {
 throw new \Exception('not all articles are in stock');
 }
 return true;
 })->then(function() use ($request):PromiseInterface {
 $promises = [];

 foreach ($request->cart as $article) {
 $promises[] = $this->client->request('takeArticle',
[$article->articlenumber, $article->amount]);
 }

 return \React\Promise\all($promises);
 })->then(function(array $values):bool {
 if (array_sum($values) != count($values)) {
 throw new \Exception('not all articles are in stock');
 }
 return true;
 });
}

The consistent use of promises and not caring about the return message actually allows
some simplifications; instead of directly sending back an error message, you can simply
throw an exception, which will cause the promise returned by this function to be
automatically rejected.

Building an Asynchronous Microservice Architecture

[232]

The existing server.php file can now be simplified by quite a few lines of code:

$client = new JsonRpcClient($ctx, 'tcp://inventory:5557');
$checkoutService = new CheckoutService($client);

$socket->on('message', function($msg) use ($ctx, $checkoutService,
$pubSocket, $socket) {
 echo "received checkout order $msg\n";

 $checkoutService->handleCheckoutOrder($msg)->then(function() use
($pubSocket, $msg, $socket) {
 $pubSocket->send($msg);
 $socket->send(json_encode(['msg' => 'OK']));
 }, function(\Exception $err) use ($socket) {
 $socket->send(json_encode(['error' => $err->getMessage()]));
 });
});

Next, you can get to work on the HTTP server. For this, you'll first need a simple socket
server that you can then pass into the actual HTTP server class. This can be done at any
point in the server.php before the event loop is run:

$httpSocket = new \React\Socket\Server($loop);
$httpSocket->listen(8080, '0.0.0.0');
$httpServer = new \React\Http\Server($httpSocket);

$loop->run();

The HTTP server itself has a 'request' event for which you can register a listener function
(similar to the 'message' event of the ZeroMQ sockets). The listener function gets a
request and a response object passed as a parameter. These are instances of the
React\Http\Request respective React\Http\Response classes:

$httpServer->on('request', function(React\Http\Request $req,
React\Http\Response $res) {
 $res->writeHead(200);
 $res->end('Hello World');
});

Unfortunately, React HTTP's Request and Response classes are not compatible with the
respective PSR-7 interfaces. However, if the need arises you can convert them relatively
easily, as already seen in the section Bridging Ratchet and PSR-7 applications in Chapter 6,
Building a Chat Application.

Building an Asynchronous Microservice Architecture

[233]

Within this listener function, you can first check for a correct request method and path, and
send an error code, otherwise:

$httpServer->on('request', function(React\Http\Request $req,
React\Http\Response $res) {
 if ($request->getPath() != '/orders') {
 $msg = json_encode(['msg' => 'this resource does not exist']);
 $response->writeHead(404, [
 'Content-Type' => 'application/json;charset=utf8',
 'Content-Length' => strlen($msg)
]);
 $response->end($msg);
 return;
 }
 if ($request->getMethod() != 'POST') {
 $msg = json_encode(['msg' => 'this method is not allowed']);
 $response->writeHead(405, [
 'Content-Type' => 'application/json;charset=utf8',
 'Content-Length' => strlen($msg)
]);
 $response->end($msg);
 return;
 }
});

This is where it gets tricky. The ReactPHP HTTP server is so asynchronous, that when the
request event is triggered the request body has not yet been read from the network socket.
To get the actual request body, you need to listen on the request's data event. However, the
request body is read in chunks of 4096 bytes, so for large request bodies, the data event may
actually be called multiple times. The easiest way to read the full request body is to check
the Content-Length header and check in the data event handler if exactly this amount of
bytes has already been read:

$httpServer->on('request', function(React\Http\Request $req,
React\Http\Response $res) {
 // error checking omitted...

 $length = $req->getHeaders()['Content-Length'];
 $body = '';
 $request->on('data', function(string $chunk) use (&$body) {
 $body .= $chunk;
 if (strlen($body) == $length) {
 // body is complete!
 }
 });
});

Building an Asynchronous Microservice Architecture

[234]

Of course, this won't work when the sender uses the so-called chunked transfer encoding in
their request. However, reading a request body using chunked transfer would work a
similar way; in this case, the exit condition is not dependent on the Content-Length
header, but instead when the first empty chunk has been read.

After the complete request body has been read, you can then pass this body into the
$checkoutService that you have already used before:

$httpServer->on('request', function(React\Http\Request $req,
React\Http\Response $res) use ($pubSocket, $checkoutService) {
 // error checking omitted...

 $length = $req->getHeaders()['Content-Length'];
 $body = '';

 $request->on('data', function(string $chunk) use (&$body, $pubSocket,
$checkoutService) {
 $body .= $chunk;
 if (strlen($body) == $length) {
 $checkoutService->handleCheckoutOrder($body)
 ->then(function() use ($response, $body, $pubSocket) {
$pubSocket->send($body);
 $msg = json_encode(['msg' => 'OK']);
 $response->writeHead(200, [
 'Content-Type' => 'application/json',
 'Content-Length' => strlen($msg)
]);
 $response->end($msg);
 }, function(\Exception $err) use ($response) {
 $msg = json_encode(['msg' => $err->getMessage()]);
 $response->writeHead(500, [
 'Content-Type' => 'application/json',
 'Content-Length' => strlen($msg)
]);
 $response->end($msg);
 });
 }
 });
});

Building an Asynchronous Microservice Architecture

[235]

The CheckoutService class is used exactly the same way as before. The only difference
now is how the response is sent back to the client; if the original request was received by the
ZeroMQ REP socket, a respective response was sent to the REQ socket that sent the request.
Now, if the request was received by the HTTP server, an HTTP response with the same
content is sent.

You can test your new HTTP API using a command-line tool such as curl or HTTPie:

$ http -v localhost:8080/orders
cart:='[{"articlenumber":1000,"amount":3}]'
customer:='{"email":"john.doe@example.com"}'

The following screenshot shows an example output when testing the new API endpoint
using the preceding HTTPie command:

Testing the new HTTP API

Building an Asynchronous Microservice Architecture

[236]

Summary
In this chapter, you have learned about ZeroMQ as a new communication protocol and how
you can use it in PHP. In contrast to HTTP, ZeroMQ supports other and more complex
communication patterns than the simple request/reply pattern. Especially the
publish/subscribe and the push/pull pattern, which allow you to build loosely coupled
architectures that are easily extensible by new functionalities and scale very well.

You have also learned how you can use the ReactPHP framework to build asynchronous
services using event loops and how you can make asynchronicity manageable using
promises. We have also discussed how you can integrate ZeroMQ-based applications with
regular HTTP APIs.

While the previous chapters have all focused on different network communication patterns
(RESTful HTTP in Chapter 5, Creating a RESTful Web Service, WebSockets in Chapter 6,
Building a Chat Application, and now ZeroMQ), we will make a fresh start in the following
chapter and learn how PHP can be used to build parsers for custom expression languages.

8
Building a Parser and

Interpreter for a Custom
Language

Extensibility and adaptability are often the required features in enterprise applications.
Often, it is useful and practical-or even an actual feature requirement by users-to change an
application's behavior and business rules at runtime. Imagine, for example, an e-commerce
application in which sales representatives can configure business rules themselves; for
example, when the system should offer free shipping for a purchase or should apply a
certain discount when some special conditions are met (offer free shipping when the
purchase amount exceeds 150 Euros , and the customer has already made two or more
purchases in the past or has been a customer for more than a year).

By experience, rules such as these tend to get ridiculously complex (offer a discount when
the customer is male and is older than 35 years and has two kids and a cat named Mr.
Whiskers and placed the purchase order on a cloudless full-moon night) and may change
frequently. For this reason, as a developer, you might actually be glad to offer your user a
possibility to configure rules such as these for themselves, instead of having to update, test,
and redeploy the application every time one of these rules changes. A feature like this is
called end-user development and is often implemented using domain-specific languages.

Domain-specific languages are languages that are tailored for one specific application
domain (in contrast to general-purpose languages, such as C, Java or-you guessed it-PHP).
In this chapter, we will build our own parser for a small expression language that can be
used to configure business rules in enterprise applications.

For this, we'll need to recapitulate how a parser works and how formal languages are
described using formal grammars.

Building a Parser and Interpreter for a Custom Language

[238]

How interpreters and compilers work
Interpreters and compilers read programs that are formulated in a programming language.
They either execute them directly (interpreters) or first convert them into a machine
language or another programming language (compilers). Both interpreters and compilers
usually have (among others) two components called lexer and parser.

This is a basic architecture of a compiler or interpreter

An interpreter may omit the code generation and run the parsed program directly without a
dedicated compilation step.

The lexer (also called scanner or tokenizer) dissects an input program into its smallest
possible parts, the so-called tokens. Each token consists of a token class (for example,
numerical value or variable identifier) and the actual token contents. For example, a lexer
for a calculator given the input string 2 + (3 * a) might generate the following list of
tokens (each having a token class and value):

Number (“2“)1.
Addition operator (“+“)2.
Opening bracket (“(“)3.
Number (“3“)4.
Multiplication operator (“*“)5.
Variable identifier (“a“)6.
Closing bracket (“)“)7.

In the next step, the parser takes the token streams and tries to derive the actual program
structure from this stream. For this, the parser needs to be programmed with a set of rules
that describe the input language, a grammar. In many cases, a parser generates a data
structure that represents the input program in a structured tree; the so-called syntax tree.
For example, the input string 2 + (3 * a) generates the following syntax tree:

Building a Parser and Interpreter for a Custom Language

[239]

An Abstract Syntax Tree (AST) that can be generated from the expression 2 + (3 * a)

Note that there are programs that will pass the lexical analysis, but in the following step,
they are recognized as syntactically wrong by the parser. For example, the input string
called 2 + (1 would pass the lexer (and generate a token list such as {Number(2),
Addition Operator, Opening bracket, Number(1)}), but it is obviously
syntactically wrong as the opening bracket does not make any sense without a matching
closing bracket (assuming that the parser uses the grammar universally recognized for
mathematical expressions; in other grammars, 2+(1 might actually be a syntactically valid
expression)

Languages and grammars
In order for a parser to be able to understand a program, it needs a formal description of
that language-a grammar. In this chapter, we will work with a so-called parsing expression
grammar (PEG). A PEG is (relatively) easy to define and there are libraries that can generate
a parser for a given grammar automatically.

A grammar consists of terminal symbols and non-terminal symbols. A non-terminal
symbol is a symbol that maybe composed of several other symbols, following certain rules
(production rules). For example, a grammar could contain a number as non-terminal
symbol. Each number could be defined as an arbitrary-length sequence of digits. As a digit
could then be any of the characters from 0 to 9 (with each of the actual digits being a
terminal symbol).

Let's try to describe the structure of numbers (and then building on this mathematical
expressions in general) formally. Let's start by describing how a number looks like. Each
number consists of one or more digits, so let's start by describing digits and numbers:

Digit: '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9'
Number: Digit+

Building a Parser and Interpreter for a Custom Language

[240]

In this example, Digit is our first non-terminal symbol. The first rule of our grammar states
that any of the characters 0 to 9 is a digit. In this example, the characters '0' to '9' are
terminal symbols, the smallest possible building blocks.

In practice, many Parser generators will allow you to use regular
expressions to match terminal symbols. In the previous example, instead
of enumerating all possible digits, you could then simply state this:
Digit: /[0-9]/

The second rule of our grammar states that a Number (our second non-terminal symbol)
consists of one or more Digit symbols (the + means repeat once or more). Using the same
way, we could also expand the grammar to also support decimal numbers:

Digit: '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9'
Integer: Digit+Decimal: Digit* '.' Digit+Number: Decimal | Integer

Here, we've introduced two new non-terminal symbols: Integer and Decimal. Integer is
simply a sequence of digits, while a Decimal may start with any number of digits (or none
at all, which means that a value such as .12 would also be a valid number), then a dot and
then one or more digits. In contrast to the + operator (“repeat once or more”) already used
above, the * operator means “none or once or more”. The production rule for Number now
states that a number can either be a decimal number or an integer.

Order is important here; given an input string of 3.14, the integer rule
would match the 3 of this input string, while the Decimal rule would
match the entire string. So, in this case it's safer to first try to parse the
number as a decimal, and when that fails, parse the number as an integer.

Right now, this grammar describes only positive numbers. However, it can easily be
modified to also support negative numbers:

Digit: '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9'
Integer: '-'? Digit+
Decimal: '-'? Digit* '.' Digit+
Number: Decimal | Integer

The ? character used in this example states that a symbol is optional. This means that both
an integer and a decimal number can now optionally start with a - character.

We can now continue to define more rules for our grammar. For example, we could add a
new rule that describes a multiplication:

Product: Number ('*' Number)*

Building a Parser and Interpreter for a Custom Language

[241]

As a division is basically the same operation as a multiplication (and has the same operator
precedence), we can treat both cases with the same rule:

Product: Number (('*'|'/') Number)*

As soon as you add a rule for sums to your grammar, it's important to consider the order of
operations (multiplication first, then addition). Let's define a new rule called Sum (again,
covering both addition and subtraction with one rule):

Sum: Product (('+'|'-') Product)*

This may seem counter intuitive, at first. After all, a sum does not really need to consist of
two products. However, as our Product rule uses * as a quantifier, it will also match single
numbers, allowing expressions such as 5 + 4 to be parsed as Product + Product.

For our grammar to become complete, we still need the ability to parse nested statements.
As it is, our grammar is able to parse statements such as 2 * 3, 2 + 3. Even 2 + 3 * 4
will be parsed correctly as 2 + (3 * 4) (and not (2 + 3) * 4). However, a statement
such as (2 + 3) * 4 does not match any rule of our grammar. After all, the Product rule
states that a product is any number of Numbers joined by * characters; since a bracket-
enclosed sum does not match the Number rule, the Product rule will not match either. To
solve this problem, we'll introduce two new rules:

Expr: Sum
Value: Number | '(' Expr ')'

With the new Value rule, we can adjust the Product rule to match either regular numbers
or bracket-enclosed exceptions:

Product: Value ('*' Value)*

Here, you will find a complete grammar necessary for describing mathematical expressions.
It does not support any kind of variables or logical statements yet, but it will be a
reasonable starting point for our own parser that we'll build in the remainder of this
chapter:

Expr: Sum
Sum: Product (('+' | '-') Product)*
Product: Value (('*' | '/') Value)*
Value: Number | '(' Expr ')'
Number: (Decimal | Integer)
Decimal: '-'? Digit* '.' Digit+
Integer: '-'? Digit+
Digit: '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9'

Building a Parser and Interpreter for a Custom Language

[242]

Your first PEG parser
Building a tokenizer and parser from scratch is a very tedious task. Luckily, many libraries
exist that you can use to generate a parser automatically from some kind of formal grammar
definition.

In PHP, you can use the hafriedlander/php-peg library to generate the PHP code for a
parser for any kind of formal language that can be described by a parsing expression
grammar. For this, create a new project directory and create a new composer.json file
with the following contents:

{
 "name": "packt-php7/chp8-calculator",
 "authors": [{
 "name": "Martin Helmich",
 "email": "php7-book@martin-helmich.de"
 }],

 "require": {
 "hafriedlander/php-peg": "dev-master"
 },
 "autoload": {
 "psr-4": {
 "Packt\\Chp8\\DSL": "src/"
 },
 "files": [
 "vendor/hafriedlander/php-peg/autoloader.php"
]
 }
}

Note that the hafriedlander/php-peg library does not use a PSR-0 or PSR-4 autoloader,
but it ships its own class loader instead. Because of this, you cannot use composer's built-in
PSR-0/4 class loader and need to manually include the package's autoloader.

Similar to the previous chapters, we'll be using Packt\Chp8\DSL as a base namespace for
our PSR-4 class loader based in the src/ directory. This means that a PHP class called
Packt\Chp8\DSL\Foo\Bar should be located in the src/Foo/Bar.php file.

When working with PHP PEG, you write a parser as a regular PHP class that contains the
grammar in a special kind of comment. This class is used as an input file for the actual
parser generator, which then generates the actual parser source code. The file type for the
parser input file is typically .peg.inc. The parser class has to extend the
hafriedlander\Peg\Parser\Basic class.

Building a Parser and Interpreter for a Custom Language

[243]

Our parser will have the Packt\Chp8\DSL\Parser\Parser class name. It will be stored in
the src/Parser/Parser.peg.inc file:

namespace Packt\Chp8\DSL\Parser;

use hafriedlander\Peg\Parser\Basic;

class Parser extends Basic
{
 /*!* ExpressionLanguage

 <Insert grammar here>

 */
}

Note the comment within the class that starts with the /*!* characters.
This special comment block will be picked up by the parser generator and
needs to contain the grammar from which the parser will be generated.

You can then build the actual parser (which will be stored in the file
src/Parser/Parser.php, where it will be able to be picked up by the composer class
loader) using the PHP-PEG CLI script:

 $ php -d pcre.jit=0 vendor/hafriedlander/php-peg/cli.php
 src/Parser/Parser.peg.inc > src/Parser/Parser.php

The -d pcre.jit=0 flag is required to fix a PHP 7-related bug in the PEG
package. Disabling the pcre.jit flag may have an impact on the
program's performance; however this flag must only be disabled when the
parser is generated. The generated parser will not be affected by the
pcre.jit flag.

Currently, the parser generation will fail with an error, because the parser class does not yet
contain a valid grammar. This can easily be changed; add the following lines to the special
comment (starting with /*!*) in your parser input file:

/*!* ExpressionLanguage

Digit: /[0-9]/
Integer: '-'? Digit+
Decimal: '-'? Digit* '.' Digit+
Number: Decimal | Integer

*/

Building a Parser and Interpreter for a Custom Language

[244]

You will note that this is exactly the example grammar for matching numbers that we've
used in the previous section. This means that after rebuilding the parser, you will have a
parser that knows how numbers look like and can recognize them. Admittedly, this is not
enough. But we can build on it.

Rebuild your parser by running the cli.php script as shown previously and continue by
creating a test script called test.php in your project directory:

require_once 'vendor/autoload.php';

use \Packt\Chp8\DSL\Parser\Parser;

$result1 = new (Parser('-143.25'))->match_Number();
$result2 = new (Parser('I am not a number'))->match_Number();

var_dump($result1);
var_dump($result2);

Remember, the Packt\Chp8\DSL\Parser\Parser class was automatically generated from
your Parser.peg.inc input file. The class inherits the
hafriedlander\Peg\Parser\Basic class, which also provides the constructor. The
constructor accepts an expression that the parser should parse.

For each non-terminal symbol that is defined in your grammar, the parser will contain a
function named match_[symbol name]() (so, for example, match_Number) that will
match the input string against the given rule.

In our example, $result1 is the matching result against a valid number (or, in general, an
input string that's matched by the parser's grammar), while the input string of $result2 is
obviously not a number and should not be matched by the grammar. Let's have a look at
the output of this test script:

array(3) {
 '_matchrule' =>
 string(6) "Number"
 'name' =>
 string(6) "Number"
 'text' =>
 string(7) "-143.25"
}
bool(false)

As you can see, parsing the first input string returns an array that contains both the
matching rule and the string that was matched by the rule. If the rule did not match (as for
example in $result2), the match_* functions will always return false.

Building a Parser and Interpreter for a Custom Language

[245]

Let's continue by adding the remainder of the rules that we've already seen in the previous
section. These will allow our parser to not only parse numbers but entire mathematical
expressions:

/*!* ExpressionLanguage

Digit: /[0-9]/
Integer: '-'? Digit+
Decimal: '-'? Digit* '.' Digit+
Number: Decimal | Integer
Value: Number | '(' > Expr > ')'
Product: Value (> ('*'|'/') > Value)*
Sum: Product (> ('+'|'-') > Product)*
Expr: Sum

*/

Pay special attention to the > characters in this code example. Those are a special symbol
provided by the parser generator that matches whitespace sequences of any length. In some
grammars, whitespaces might matter, but when parsing mathematical expressions, you
typically do not care if someone enters 2+3 or 2 + 3.

Rebuild your parser and adjust your test script to test these new rules:

var_dump((new Parser('-143.25'))->match_Expr());
var_dump((new Parser('12 + 3'))->match_Expr());
var_dump((new Parser('1 + 2 * 3'))->match_Expr());
var_dump((new Parser('(1 + 2) * 3'))->match_Expr());
var_dump((new Parser('(1 + 2)) * 3'))->match_Expr());

Pay special attention to the last line. Obviously, the (1 + 2)) * 3 expression is
syntactically wrong, because it contains more closing brackets than opening brackets.
However, the output of the match_Expr function for this input statement will be the
following:

array(3) {
 '_matchrule' =>
 string(4) "Expr"
 'name' =>
 string(4) "Expr"
 'text' =>
 string(7) "(1 + 2)"
}

Building a Parser and Interpreter for a Custom Language

[246]

As you can see, the input string still matched the Expr rule, just not the entire string. The
first part of the string, (1 + 2), is syntactically correct and mated by the Expr rule. This is
very important to keep in mind when working with the PEG parser. If a rule does not
match the entire input string, the parser will still match as much of the input as it can. It's
up to you, as a user of this parser, to determine if a partial match is a good thing or not (in
our case, this should probably trigger an error, as a partially matched expression would
result in very strange results and undoubtedly be very surprising for a user).

Evaluating expressions
Up until now, we've only used our custom-built PEG parser to check if an input string
conforms to a given grammar (meaning, we can tell if an input string contains a valid
mathematical expression or not). The next logical step is to actually evaluate these
expressions (for example, determining that '(1 + 2) * 3' evaluates to '9').

As you have already seen, each match_* function returns an array with additional
information on the matched string. Within the parser, you can register custom functions
that will be called when a given symbol is matched. Let's start with something simple and
try to convert numbers that are matched by our grammar to actual PHP integer or float
values. For this, start by modifying the Integer and Decimal rules in your grammar as
follows:

Integer: value:('-'? Digit+)
 function value(array &$result, array $sub) {
 $result['value'] = (int) $sub['text'];
 }

Double: value:('-'? Digit* '.' Digit+)
 function value(array &$result, array $sub) {
 $result['value'] = (float) $sub['text'];
 }

Let's have a look at what's happening here. In each rule, you can specify names for
subpatterns within the rule. For example, the pattern Digit+ in the Integer rule gets the
name called value assigned. As soon as the parser finds a string matching this pattern, it
will call the function with the same name supplied below the Integer rule. The function
will be called with two parameters: the &$result parameter will be the array returned by
the actual match_Number function later. As you can see, the parameter is passed as
reference and you can modify it within the value function. The $sub parameter contains the
result array of the subpattern (which, in any case, contains a property text from which you
can access the actual text contents of the matched subpattern).

Building a Parser and Interpreter for a Custom Language

[247]

In this case, we simply use PHP's built-in functions to convert the number within the text to
an actual int or float variable. However, this is only possible because our custom
grammar and PHP coincidentally represent numbers the same way, allowing us to use the
PHP interpreter to convert these values to actual numeric values.

If you are using a non-terminal symbol in one of your rules, it is not necessary to explicitly
specify a subpattern name; you can simply use the symbol name as a function name. This
can be done in the Number rule:

Number: Decimal | Integer
 function Decimal(array &$result, array $sub) {
 $result['value'] = $sub['value'];
 }
 function Integer(array &$result, array $sub) {
 $result['value'] = $sub['value'];
 }

Again, the $sub parameter contains the result array from matching the subpattern. In this
case, this means the result array returned by the match_Decimal and match_Integer
functions that you've modified yourself previously.

This will get a little more complex with the Product and Sum rules. Start by adding labels
to the individual parts of your Product rule:

Product: left:Value (operand:(> operator:('*'|'/') > right:Value))*

Continue by adding the respective rule functions to the rule:

Product: left:Value (operand:(> operator:('*'|'/') > right:Value))*
 function left(array &$result, array $sub) {
 $result['value'] = $sub['value'];
 }
 function right(array &$result, array $sub) {
 $result['value'] = $sub['value'];
 }
 function operator(array &$result, array $sub) {
 $result['operator'] = $sub['text'];
 }
 function operand(array &$result, array $sub) {
 if ($sub['operator'] == '*') {
 $result['value'] *= $sub['value'];
 } else {
 $result['value'] /= $sub['value'];
 }
 }

Building a Parser and Interpreter for a Custom Language

[248]

The Sum rule can be modified respectively:

Sum: left:Product (operand:(> operator:('+'|'-') > right:Product))*
 function left(array &$result, array $sub) {
 $result['value'] = $sub['value'];
 }
 function right(array &$result, array $sub) {
 $result['value'] = $sub['value'];
 }
 function operator(array &$result, array $sub) {
 $result['operator'] = $sub['text'];
 }
 function operand(array &$result, array $sub) {
 if ($sub['operator'] == '+') {
 $result['value'] += $sub['value'];
 } else {
 $result['value'] -= $sub['value'];
 }
 }

Lastly, you still need to modify the Value and Expr rules:

Value: Number | '(' > Expr > ')'
 function Number(array &$result, array $sub) {
 $result['value'] = $sub['value'];
 }
 function Expr(array &$result, array $sub) {
 $result['value'] = $sub['value'];
 }
Expr: Sum
 function Sum(array &$result, array $sub) {
 $result['value'] = $sub['value'];
 }

Using these new functions in your parser, it will now be able to evaluated parsed
expressions on the fly (note that we're not following the traditional compiler architecture
here, as parsing and execution are not treated as separate steps, but rather both be done in
the same pass). Re-build your parser class using the cli.php script and adjust your test
script to test some expressions:

var_dump((new Parser('-143.25'))->match_Expr()['value']);
var_dump((new Parser('12 + 3'))->match_Expr()['value']);
var_dump((new Parser('1 + 2 * 3'))->match_Expr()['value']);
var_dump((new Parser('(1 + 2) * 3'))->match_Expr()['value']);

Building a Parser and Interpreter for a Custom Language

[249]

Running your test script will provide the following output:

double(-143.25)
int(15)
int(7)
int(9)

Building an Abstract Syntax Tree
Currently, our parser interprets the input code and evaluates it in the same pass. Most
compilers and interpreters; however, create an intermediate data structure before actually
running the program: an Abstract Syntax Tree (AST). Using an AST offers some interesting
possibilities; for example, it provides you with a structured representation of your program
that you can then analyze. Also, you can use the AST and transform it back into a text-based
program (maybe of another language).

An AST is a tree that represents the structure of a program. The first step to building an
AST-based parser is to design the tree's object model: which classes are needed and in
which way are they associated to another. The following figure shows the first draft for an
object model that can be used to describe mathematical expressions:

The (preliminary) object model for our Abstract Syntax Tree

In this model, nearly all classes implement the Expression interface. This interface
prescribes the evaluate() method, which can be provided by the implementations of this
interface to actually execute the operation modeled by the respective tree node. Let's start
by implementing the Packt\Chp8\DSL\AST\Expression interface:

namespace Packt\Chp8\DSL\AST;

interface Expression
{

Building a Parser and Interpreter for a Custom Language

[250]

 public function evaluate()
}

The next step is the Number class with its two subclasses: Integer and Decimal. As we're
going to be using PHP 7's type hinting feature, and both the Integer and Decimal classes
work exclusively with either the int or float variables; we cannot make much use of
inheritance, forcing us to leave the Number class empty:

namespace Packt\Chp8\DSL\AST;

abstract class Number implements Expression
{}

The Integer class can be initialized with a PHP integer value. As this class models a literal
integer value; the only thing that the evaluate() method needs to do in this class is to
return this value again:

namespace Packt\Chp8\DSL\AST;

class Integer extends Number
{
 private $value;

 public function __construct(int $value)
 {
 $this->value = $value;
 }

 public function evaluate(): int
 {
 return $this->value;
 }
}

The Decimal class can be implemented the same way; in this case, simply use float
instead of int as type hints:

namespace Packt\Chp8\DSL\AST;

class Decimal extends Number
{
 private $value;

 public function __construct(float $value)
 {
 $this->value = $value;
 }

Building a Parser and Interpreter for a Custom Language

[251]

 public function evaluate(): float
 {
 return $this->value;
 }
}

For the classes Addition, Subtraction, Multiplication and Division, we'll be using a
common base class, Packt\Chp8\DSL\AST\BinaryOperation. This class will hold the
constructor that you then won't have to implement over and over again:

namespace Packt\Chp8\DSL\AST;

abstract class BinaryOperation implements Expression
{
 protected $left;
 protected $right;

 public function __construct(Expression $left, Expression $right)
 {
 $this->left = $left;
 $this->right = $right;
 }
}

Implementing the actual classes modeling the operations becomes easy. Let's consider the
Addition class as an example:

namespace Packt\Chp8\DSL\AST;

class Addition extends BinaryOperation
{
 public function evaluate()
 {
 return $this->left->evaluate() + $this->right->evaluate();
 }
}

The remaining classes called Subtraction, Multiplication and Division can be
implemented in a way similar to the Addition class. For the sake of brevity, the actual
implementation of these classes is left as an exercise for you.

What's left now is to actually build the AST in the parser. This is relatively easy, as we can
now simply modify the already existing hook functions that are called by the parser when
individual rules are matched.

Building a Parser and Interpreter for a Custom Language

[252]

Let's start with the rules for parsing numbers:

Integer: value:('-'? Digit+)
 function value(array &$result, array $sub) {
 $result['node'] = new Integer((int) $sub['text']);
 }

Decimal: value:('-'? Digit* '.' Digit+)
 function value(array &$result, array $sub) {
 $result['node'] = new Decimal((float) $sub['text']);
 }

Number: Decimal | Integer
 function Decimal(&$result, $sub) {
 $result['node'] = $sub['node'];
 }
 function Integer(&$result, $sub) {
 $result['node'] = $sub['node'];
 }

When the Integer or Decimal rule matches, we create a new AST node of the Integer or
Decimal class and save it in the return array's node property. When the Number rule
matches, we simply take over the already created node stored in the matched symbol.

We can adjust the Product rule in a similar way:

Product: left:Value (operand:(> operator:('*'|'/') > right:Value))*
 function left(array &$result, array $sub) {
 $result['node'] = $sub['node'];
 }
 function right(array &$result, array $sub) {
 $result['node'] = $sub['node'];
 }
 function operator(array &$result, array $sub) {
 $result['operator'] = $sub['text'];
 }
 function operand(array &$result, array $sub) {
 if ($sub['operator'] == '*') {
 $result['node'] = new Multiplication($result['node'],
$sub['node']);
 } else {
 $result['node'] = new Division($result['node'], $sub['node']);
 }
 }

Building a Parser and Interpreter for a Custom Language

[253]

As our AST model treats operations such as multiplications strictly as binary operations, the
parser will deconstruct input expressions such as 1 * 2 * 3 * 4 into a chain of binary
multiplications (similar to 1 * (2 * (3 * 4)) as shown in the following figure):

The expression 1 * 2 * 3 * 4 as a syntax tree

Continue by adjusting your Sum rule in the same way:

Sum: left:Product (operand:(> operator:('+'|'-') > right:Product))*
 function left(&$result, $sub) {
 $result['node'] = $sub['node'];
 }
 function right(&$result, $sub) {
 $result['node'] = $sub['node'];
 }
 function operator(&$result, $sub) { $result['operator'] = $sub['text'];
}
 function operand(&$result, $sub) {
 if ($sub['operator'] == '+') {
 $result['node'] = new Addition($result['node'], $sub['node']);
 } else {
 $result['node'] = new Subtraction($result['node'],
$sub['node']);
 }
 }

Now, all that's left is to read the created AST node in the Value and Expr rules is follows:

Value: Number | '(' > Expr > ')'
 function Number(array &$result, array $sub) {
 $result['node'] = $sub['node'];
 }

Building a Parser and Interpreter for a Custom Language

[254]

Expr: Sum
 function Sum(array &$result, array $sub) {
 $result['node'] = $sub['node'];
 }

In your test script, you can now test if the AST is correctly built by extracting the node
property from the match_Expr() function's return value. You can then get the expression's
result by calling the evaluate() method on the AST's root node:

$astRoot = (new Parser('1 + 2 * 3'))->match_Expr()['node'];
var_dump($astRoot, $astRoot->evaluate());

$astRoot = (new Parser('(1 + 2) * 3'))->match_Expr()['node'];
var_dump($astRoot, $astRoot->evaluate());

Note that the two expressions in this test script should yield two different syntax trees (both
shown in the following figure) and evaluate to 7 and 9, respectively.

The two syntax trees resulting from parsing the 1+2*' and (1+2)*' expressions

Building a better interface
Right now, the parser that we have built is not really easy to use. In order to use the parser
correctly, a user (in this context, read “user” as “another developer that uses your parser”)
has to call the match_Expr() method (which is just one of many public match_* functions
offered by the parser that are not actually supposed to be called by external users), extract
the node property from the returned array, and then call the evaluate function on the root
node contained in this property. Also, the parser also matches partial strings (remember the
example (1 + 2)) * 3, which was recognized as partially correct by our parser), which
might really surprise some users.

Building a Parser and Interpreter for a Custom Language

[255]

This reason is enough to extend our project by a new class that encapsulates these quirks
and to offer a cleaner interface to our parser. Let's create a new class,
Packt\Chp8\DSL\ExpressionBuilder:

namespace Packt\Chp8\DSL\ExpressionBuilder;

use Packt\Chp8\DSL\AST\Expression;
use Packt\Chp8\DSL\Exception\ParsingException;
use Packt\Chp8\DSL\Parser\Parser;

class ExpressionBuilder
{
 public function parseExpression(string $expr): Expression
 {
 $parser = new Parser($expr);
 $result = $parser->match_Expr();

 if ($result === false || $result['text'] !== $expr) {
 throw new ParsingException();
 }

 return $result['node'];
 }
}

In this example, we're checking if the entire string could be parsed by asserting that the
matched string returned by the parser is actually equal to the input string (and not just a
substring). If this is the case (or if the expression could not be parsed at all, and the result is
just false), an instance of Packt\Chp8\DSL\Exception\ParsingException is thrown.
This exception class is not yet defined; for now, it can simply inherit the base exception class
and does not need to contain any custom logic:

namespace Packt\Chp8\DSL\Exception;

class ParsingException extends \Exception
{}

The new ExpressionBuilder class now offers you a more concise way to parse and
evaluate expressions. For example, you can now use the following construct in your
test.php script:

$builder = new \Packt\Chp8\DSL\ExpressionBuilder;

var_dump($builder->parseExpression('12 + 3')->evaluate());

Building a Parser and Interpreter for a Custom Language

[256]

Evaluating variables
So far, our parser can evaluate static expressions, starting with simple ones such as 3 (which
evaluates, what a surprise, to 3) up to arbitrarily complicated ones such as (5 + 3.14) *
(14 + (29 - 2 * 3.918)) (which, by the way, evaluates to 286.23496). However, all of
these expressions are static; they will always evaluate to the same result.

In order to make this more dynamic, we will now extend our grammar to allow variables.
An example of an expression with variables is 3 + a, which could then be evaluated
multiple times with different values for a.

This time, let's start by modifying the object model for the syntax tree. First, we'll need a
new node type, Packt\Chp8\DSL\AST\Variable, allowing for example the 3 + a
expression to generate the following syntax tree:

The syntax tree generated from the expression 3 + a

There's also a second problem: contrary to the Number nodes or arithmetic operations that
use Number nodes, we cannot simply compute the numeric value of a Variable node (after
all, it could have any value – that's the point of a variable). So when evaluating an
expression, we'll also need to pass information on which variables exists and what values
they have. For this, we'll simply extend the evaluate() function defined in the
Packt\Chp8\DSL\AST\Expression interface by an additional parameter:

namespace Packt\Chp8\DSL\AST;

interface Expression
{
 public function evaluate(array $variables = []);
}

Building a Parser and Interpreter for a Custom Language

[257]

Changing the interface definition necessitates changing all classes that implement this
interface. In the Number subclasses (Integer and Decimal), you can add the new
parameter and simply ignore it. The value of a static number does not depend on the values
of any variables at all. The following code example shows this change in the
Packt\Chp8\DSL\AST\Integer class, but it remembers to change the Decimal class in the
same way as well:

class Integer
{
 // ...
 public function evaluate(array $variables = []): int
 {
 return $this->value;
 }
}

In the BinaryOperation subclasses (Addition, Subtraction, Multiplication, and
Division), the values of defined variables also do not really matter. But we need to pass
them to the subnodes of these nodes. The following example shows this change in the
Packt\Chp8\DSL\AST\Addition class, but it remembers to also change the
Subtraction, Multiplication, and Division classes:

class Addition
{
 public function evaluate(array $variables = [])
 {
 return $this->left->evaluate($variables)
 + $this->right->evaluate($variables);
 }
}

Finally, we can now declare our Packt\Chp8\DSL\AST\Variable class:

namespace Packt\Chp8\DSL\AST;

use Packt\Chp8\DSL\Exception\UndefinedVariableException;

class Variable implements Expression
{
 private $name;

 public function __construct(string $name)
 {
 $this->name = $name;
 }

Building a Parser and Interpreter for a Custom Language

[258]

 public function evaluate(array $variables = [])
 {
 if (isset($variables[$this->name])) {
 return $variables[$this->name];
 }
 throw new UndefinedVariableException($this->name);
 }
}

Within this class' evaluate() method, you can look up the actual value that this variable
currently has. If a variable is not defined (read: does not exist in the $variables
argument), we'll raise an instance of the (not-yet-implemented)
Packt\Chp8\DSL\Exception\UndefinedVariableException to let the user know
something's wrong.

How you handle undefined variables in your custom language is
completely up to you. Instead of triggering errors, you could also change
the Variable class' evaluate() method to return a default value such as
0 (or anything else) when an undefined variable is evaluated. However,
using an undefined variable is probably unintentional, and simply
continuing with a default value would probably be very surprising for
your users.

The UndefinedVariableException class can simply extend the regular Exception class:

namespace Packt\Chp8\DSL\Exception;

class UndefinedVariableException extends \Exception
{
 private $name;

 public function __construct(string $name)
 {
 parent::__construct('Undefined variable: ' . $name);
 $this->name = $name;
 }
}

Finally, we need to adjust the parser's grammar to actually recognize variables in
expressions. For this, our grammar needs two additional symbols:

Name: /[a-zA-z]+/
Variable: Name
 function Name(&$result, $sub) {
 $result['node'] = new Variable($sub['name']);
 }

Building a Parser and Interpreter for a Custom Language

[259]

Next, you'll need to extend the Value rule. Currently, Value can be either a Number
symbol, or an Expr wrapped in braces. Now, you need to also allow variables:

Value: Number | Variable | '(' > Expr > ')'
 function Number(array &$result, $sub) {
 $result['node'] = $sub['node'];
 }
 function Variable(array &$result, $sub) {
 $result['node'] = $sub['node'];
 }
 function Expr(array &$result, $sub) {
 $result['node'] = $sub['node'];
 }

Rebuild your parser using PHP-PEG's cli.php script, and add a few calls to your
test.php script to test this new feature:

$expr = $builder->parseExpression('1 + 2 * a');
var_dump($expr->evaluate(['a' => 1]));
var_dump($expr->evaluate(['a' => 14]));
var_dump($expr->evaluate(['a' => -1]));

These should evaluate to 3, 29, and -1 respectively. You can also try evaluating the
expression without passing any variables, which should (rightfully so) result in an
UndefinedVariableException being thrown.

Adding logical expressions
Currently, our language only supports numerical expressions. Another useful addition
would be to support Boolean expressions that do not evaluate to numeric values but to true
or false. Possible examples would include expressions such as 3 = 4 (which would always
evaluate to false), 2 < 4 (which would always evaluate to true), or a <= 5 (which depends
on the value of variable a).

Building a Parser and Interpreter for a Custom Language

[260]

Comparisons
As before, let's start by extending the object model of our syntax tree. We'll start with an
Equals node that represents an equality check between two expressions. Using this node,
the 1 + 2 = 4 - 1 expression would produce the following syntax tree (and should of
course eventually evaluate to true):

The syntax tree that should result from parsing the 1 + 2 = 4 – 1 expression

For this, we will implement the Packt\Chp8\DSL\AST\Equals class. This class can inherit
the BinaryOperation class that we implemented earlier:

namespace Packt\Chp8\DSL\AST;

class Equals extends BinaryOperation
{
 public function evaluate(array $variables = [])
 {
 return $this->left->evaluate($variables)
 == $this->right->evaluate($variables);
 }
}

While we're at it, we can also implement the NotEquals node at the same time:

namespace Packt\Chp8\DSL\AST;

class NotEquals extends BinaryOperation
{
 public function evaluate(array $variables = [])
 {
 return $this->left->evaluate($variables)
 != $this->right->evaluate($variables);
 }
}

Building a Parser and Interpreter for a Custom Language

[261]

In the next step, we'll need to adjust our parser's grammar. First, we need to change the
grammar to differentiate between numerical and Boolean expressions. For this, we'll
rename the Expr symbol to NumExpr in the entire grammar. This affects the Value symbol:

Value: Number | Variable | '(' > NumExpr > ')'
 function Number(array &$result, array $sub) {
 $result['node'] = $sub['node'];
 }
 function Variable(array &$result, array $sub) {
 $result['node'] = $sub['node'];
 }
 function NumExpr(array &$result, array $sub) {
 $result['node'] = $sub['node'];
 }

Of course, you'll also need to change the Expr rule itself:

NumExpr: Sum
 function Sum(array &$result, array $sub) {
 $result['node'] = $sub['node'];
 }

Next, we can define a rule for equality (and also non-equality):

ComparisonOperator: '=' | '|='
Comparison: left:NumExpr (operand:(> op:ComparisonOperator >
right:NumExpr))
 function left(&$result, $sub) {
 $result['leftNode'] = $sub['node'];
 }
 function right(array &$result, array $sub) {
 $result['node'] = $sub['node'];
 }
 function op(array &$result, array $sub) {
 $result['op'] = $sub['text'];
 }
 function operand(&$result, $sub) {
 if ($sub['op'] == '=') {
 $result['node'] = new Equals($result['leftNode'],
$sub['node']);
 } else {
 $result['node'] = new NotEquals($result['leftNode'],
$sub['node']);
 }
 }

Building a Parser and Interpreter for a Custom Language

[262]

Note that this rule got a bit more complicated in this case, as it supports multiple operators.
However, these rules are now relatively easy to be extended by more operators (when we're
checking non-equality things such as “greater than” or “smaller than” might be the next
logical steps). The ComparisonOperator symbol, which is defined first, matches all kinds
of comparison operators and the Comparison rule that uses this symbol to match the actual
expressions.

Lastly, we can add a new BoolExpr symbol, and also define the Expr symbol again:

BoolExpr: Comparison
 function Comparison(array &$result, array $sub) {
 $result['node'] = $sub['node'];
 }

Expr: BoolExpr | NumExpr
 function BoolExpr(array &$result, array $sub) {
 $result['node'] = $sub['node'];
 }
 function NumExpr(array &$result, array $sub) {
 $result['node'] = $sub['node'];
 }

When calling the match_Expr() function, our parser will now match both numeric and
Boolean expressions. Rebuild your parser using PHP-PEG's cli.php script, and add a few
new calls to your test.php script:

$expr = $builder->parseExpression('1 = 2');
var_dump($expr->evaluate());

$expr = $builder->parseExpression('a * 2 = 6');
var_dump($expr->evaluate(['a' => 3]);
var_dump($expr->evaluate(['a' => 4]);

These expressions should evaluate to false, true, and false respectively. The numeric
expressions that you've added before should continue to work as before.

Similar to this, you could now add additional comparison operators, such as >, >=, <, or <=
to your grammar. Since the implementation of these operators would be largely identical to
the = and |= operations, we'll leave it as an exercise for you.

Building a Parser and Interpreter for a Custom Language

[263]

The “and” and “or” operators
Another important feature in order to fully support logical expressions is the ability to
combine logical expressions via the “and” and “or” operators. As we are developing our
language with an end user in mind, we'll build our language to actually support and and or
as logical operators (in contrast to the ubiquitous && and || that you find in many general-
purpose programming language that are derived from the C syntax).

Again, let's start by implementing the respective node types for the syntax tree. We will
need node types modeling both the and and or operation so that a statement such as a = 1
or b = 2 will be parsed into the following syntax tree:

The syntax tree resulting from parsing a=1 or b=2

Begin by implementing the Packt\Chp8\DSL\AST\LogicalAnd class (we cannot use And
as a class name, because that's a reserved word in PHP):

namespace Packt\Chp8\DSL\AST;

class LogicalAnd extends BinaryOperation
{
 public function evaluate(array $variables=[])
 {
 return $this->left->evaluate($variables)
 && $this->right->evaluate($variables);
 }
}

For the or operator, you can also implement the Packt\Chp8\DSL\AST\LogicalOr class
the same way.

Building a Parser and Interpreter for a Custom Language

[264]

When working with the and and or operators, you will need to think about operator
precedence. While operator precedence is well defined for arithmetic operations, this is not
the case for logical operators. For example, the statement a and b or c and d could be
interpreted as (((a and b) or c) and d) (same precedence, left to right), or just as well
as (a and b) or (c and d) (precedence on and) or (a and (b or c)) and d
(precedence on or). However, most programming languages treat the and operator with the
highest precedence, so barring any other convention it makes sense to stick with this
tradition.

The following figure shows the syntax trees that result from applying this precedence on
the a=1 and b=2 or b=3 and a=1 and (b=2 or b=3) statements:

The syntax trees resulting form parsing a=1 and b=2 or b=3 and a=1 and (b=2 or b=3)

We will need a few new rules in our grammar for this. First of all, we need a new symbol
representing a Boolean value. For now, such a Boolean value may either be a comparison or
any Boolean expression wrapped in brackets.

BoolValue: Comparison | '(' > BoolExpr > ')'
 function Comparison(array &$res, array $sub) {
 $res['node'] = $sub['node'];
 }
 function BoolExpr(array &$res, array $sub) {
 $res['node'] = $sub['node'];
 }

Do you remember how we implemented operator precedence previously using the
Product and Sum rules? We can implement the And and Or rules the same way:

And: left:BoolValue (> "and" > right:BoolValue)*
 function left(array &$res, array $sub) {
 $res['node'] = $sub['node'];
 }

Building a Parser and Interpreter for a Custom Language

[265]

 function right(array &$res, array $sub) {
 $res['node'] = new LogicalAnd($res['node'], $sub['node']);
 }

Or: left:And (> "or" > right:And)*
 function left(array &$res, array $sub) {
 $res['node'] = $sub['node'];
 }
 function right(array &$res, array $sub) {
 $res['node'] = new LogicalOr($res['node'], $sub['node']);
 }

After this, we can extend the BoolExpr rule to also match Or expressions (and since a
single And symbol also matches the Or rule, a single And symbol will also be a BoolExpr):

BoolExpr: Or | Comparison
 function Or(array &$result, array $sub) {
 $result['node'] = $sub['node'];
 }
 function Comparison(array &$result, array $sub) {
 $result['node'] = $sub['node'];
 }

You can now add a few new test cases to your test.php script. Play around with variables
and pay special attention to how operator precedence is resolved:

$expr = $builder->parseExpression('a=1 or b=2 and c=3');
var_dump($expr->evaluate([
 'a' => 0,
 'b' => 2,
 'c' => 3
]);

Conditions
Now that our language supports (arbitrarily complex) logical expressions, we can use these
to implement another important feature: conditional statements. Our language currently
supports only expressions that evaluate to a single numeric or the Boolean value; we'll now
implement a variant of the ternary operator, which is also known in PHP:

($b > 0) ? 1 : 2;

Building a Parser and Interpreter for a Custom Language

[266]

As our language is targeted at end users, we'll use a more readable syntax, which will allow
statements such as when <condition> then <value> else <value>. In our syntax
tree, constructs such as these will be represented by the Packt\Chp8\DSL\AST\Condition
class:

<?php
namespace Packt\Chp8\DSL\AST;

class Condition implements Expression
{
 private $when;
 private $then;
 private $else;

 public function __construct(Expression $when, Expression $then,
Expression $else)
 {
 $this->when = $when;
 $this->then = $then;
 $this->else = $else;
 }

 public function evaluate(array $variables = [])
 {
 if ($this->when->evaluate($variables)) {
 return $this->then->evaluate($variables);
 }
 return $this->else->evaluate($variables);
 }
}

This means that, for example, the when a > 2 then a * 1.5 else a * 2 expression
should be parsed into the following syntax tree:

Building a Parser and Interpreter for a Custom Language

[267]

In theory, our language should also support complex expressions in the condition or the
then/else part, allowing statements such as when (a > 2 or b = 2) then (2 * a + 3
* b) else (3 * a - b) or even nested statements such as when a=2 then (when b=2
then 1 else 2) else 3:

Continue by adding a new symbol and rule to your parser's grammar:

Condition: "when" > when:BoolExpr > "then" > then:Expr > "else" > else:Expr
 function when(array &$res, array $sub) {
 $res['when'] = $sub['node'];
 }
 function then(array &$res, $sub) {
 $res['then'] = $sub['node'];
 }
 function else(array &$res, array $sub) {
 $res['node'] = new Condition($res['when'], $res['then'],
$sub['node']);
 }

Also, adjust the BoolExpr rule to also match conditions. In this case, the order is important:
if you're putting the Or or Comparison symbol first in the BoolExpr rule, the rule might
interpret when as a variable name, instead of a conditional expression.

BoolExpr: Condition | Or | Comparison
 function Condition(array &$result, array $sub) {
 $result['node'] = $sub['node'];
 }
 function Or(&$result, $sub) {
 $result['node'] = $sub['node'];

Building a Parser and Interpreter for a Custom Language

[268]

 }
 function Comparison(&$result, $sub) {
 $result['node'] = $sub['node'];
 }

Again, rebuild your parser using PHP-PEG's cli.php script, and add a few test statements to
your test script to test the new grammar rules:

$expr = $builder->parseExpression('when a=1 then 3.14 else a*2');
var_dump($expr->evaluate(['a' => 1]);
var_dump($expr->evaluate(['a' => 2]);
var_dump($expr->evaluate(['a' => 3]);

These test cases should evaluate to 3.14, 4, and 6 respectively.

Working with structured data
So far, our custom expression language has only supported very simple variables-numbers
and Boolean values. However, in real applications, this is often not so simple. When using
an expression language to offer programmable business rules, you will often be working
with structured data. For example, consider an e-commerce system in which a back-office
user has the possibility to define under which conditions a discount should be offered to a
user and what amount of a purchase should be discounted (the following figure shows a
hypothetical example of how such a feature might actually look in an application).

Typically, you do not know beforehand how a user is going to use this feature. Using only
numerical variables, you'd have to pass a whole set of variables when evaluating the
expression, on the off chance that the user might be using one or two of them. Alternatively,
you could pass an entire domain object (for example, a PHP object representing a shopping
cart and maybe another one representing the customer), as variable into the expression and
give the user the option to access properties or call methods of these objects.

Building a Parser and Interpreter for a Custom Language

[269]

A feature such as this would allow a user to use expressions such as cart.value in an
expression. When evaluating this expression, this could be translated to either a direct
property access (if the $cart variable does have a publicly accessible $value property), or
a call to a getValue() method:

An example of how structured data could be used as variables in an enterprise e-commerce application

For this, we'll need to modify our AST object model a bit. We'll introduce a new node type,
Packt\Chp8\DSL\AST\PropertyFetch, which models a named property being fetched
from a variable. However, we need to consider that these property fetches need to be
chained, for example, in expressions such as cart.customer.contact.firstname. This
expression should be parsed into the following syntax tree:

Building a Parser and Interpreter for a Custom Language

[270]

For this, we'll redefine the Variable node type that we added before. Rename the
Variable class to NamedVariable and add a new interface named Variable. This
interface can then be implemented by both the NamedVariable class and the
PropertyFetch class. The PropertyFetch class can then accept a Variable instance as
its left operator.

Start by renaming the Packt\Chp8\DSL\AST\Variable class to
Packt\Chp8\DSL\AST\NamedVariable:

namespace Packt\Chp8\DSL\AST;

use Packt\Chp8\DSL\Exception\UnknownVariableException;

class NamedVariable implements Variable
{
 private $name;

 public function __construct(string $name)
 {
 $this->name = $name;
 }

 public function evaluate(array $variables = [])
 {
 if (isset($variables[$this->name])) {
 return $variables[$this->name];
 }
 throw new UnknownVariableException();
 }
}

Then, add the new interface called Packt\Chp8\DSL\AST\Variable. It does not need to
contain any code; we'll use it just for type hinting:

namespace Packt\Chp8\DSL\AST;

interface Variable extends Expression
{
}

Continue by adding the Packt\Chp8\DSL\AST\PropertyFetch new class:

namespace Packt\Chp8\DSL\AST;

class PropertyFetch implements Variable
{
 private $left;

Building a Parser and Interpreter for a Custom Language

[271]

 private $property;

 public function __construct(Variable $left, string $property)
 {
 $this->left = $left;
 $this->property = $property;
 }

 public function evaluate(array $variables = [])
 {
 $var = $this->left->evaluate($variables);
 return $var[$this->property] ?? null;
 }
}

Lastly, modify the Variable rule in your parser's grammar:

Variable: Name ('.' property:Name)*
 function Name(array &$result, array $sub) {
 $result['node'] = new NamedVariable($sub['text']);
 }
 function property(&$result, $sub) {
 $result['node'] = new PropertyFetch($result['node'], $sub['text']);
 }

Using this rule, the Variable symbol can consist of multiple property names chained
together with the . character. The rule functions will then build a NamedVariable node for
the first property name, and then work this node into a chain of the PropertyFetch nodes
for subsequent properties.

As usual, rebuild your parser and add a few lines to your test script:

$e = $builder->parseExpression('foo.bar * 2');
var_dump($e->evaluate(['foo' => ['bar' => 2]]));

Working with objects
Getting end users to grasp the concept of data structures is no easy task. While the concept
of objects having properties (for instance, a customer having a first name and a last name) is
usually easy to convey, you probably would not bother end users with things like data
encapsulation and object methods.

Building a Parser and Interpreter for a Custom Language

[272]

Because of this, it might be useful to hide the intricacies of data access from your end user; if
a user want to access a customer's first name, they should be able to write
customer.firstname, even if the actual property of the underlying object is protected,
and you would usually need to call a getFirstname() method to read this property. Since
getter functions typically follow certain naming patterns, our parser can automatically
translate expressions such as customer.firstname to method calls such as
$customer->getFirstname().

To implement this feature, we need to extend the evaluate method of PropertyFetch by
a few special cases:

public function evaluate(array $variables = [])
{
 $var = $this->left->evaluate($variables);
 if (is_object($var)) {
 $getterMethodName = 'get' . ucfirst($this->property);
 if (is_callable([$var, $getterMethodName])) {
 return $var->{$getterMethodName}();
 } $isMethodName = 'is' . ucfirst($this->property);
 if (is_callable([$var, $isMethodName])) {
 return $var->{$isMethodName}();
 }
 return $var->{$this->property} ?? null;
 }
return $var[$this->property] ?? null;
}

Using this implementation, an expression such as customer.firstname will first check if
the customer object implements a getFirstname()method that can be called. Should this
not be the case, the interpreter will check for an isFirstname() method (which does not
make sense in this case, but could be useful as getter functions, for Boolean properties are
often named isSomething instead of getSomething). If no isFirstname() method exists
either, the interpreter will look for an accessible property named firstname, and then as a
last resort simply return null.

Building a Parser and Interpreter for a Custom Language

[273]

Optimizing the interpreter by adding a
compiler
Our parser now works as it should, and you could use it in any kind of application to offer
very flexible customization options to the end user. However, the parser does not work
very efficiently. In general, parsing expressions are computationally expensive, and in most
use cases, it is reasonable to assume that the actual expressions that you're working with do
not change with every request (or at least, are evaluated more often than they are changed).

Because of this, we can optimize the parser's performance by adding a caching layer to our
interpreter. Of course, we cannot cache the actual evaluation results of an expression; after
all, these could change when they are interpreted with different variables.

What we're going to do in this section is add a compiler feature to our parser. For each
parsed expression, our parser generates an AST that represents the structure of this
expression. You can now use this syntax tree to translate the expression into any other
programming language, for example, to PHP.

Consider the 2 + 3 * a expression. This expression generates the following syntax tree:

In our AST model, this corresponds to an instance of the Packt\Chp8\DSL\AST\Addition
class, holding a reference to an instance of the Packt\Chp8\DSL\AST\Number class and the
Packt\Chp8\DSL\AST\Product class (and so forth).

We cannot implement a compiler feature to translate this expressions back into PHP code
(after all, PHP does support simple arithmetic operations, too), which might look like this:

use Packt\Chp8\DSL\AST\Expression;

$cachedExpr = new class implements Expression
{

Building a Parser and Interpreter for a Custom Language

[274]

 public function evaluate(array $variables=[])
 {
 return 2 + (3 * $variables['a']);
 }
}

The PHP code that is generated in this way could then be saved in files for later lookup. If
the parser gets passed an expression that is already cached, it could simply load the saved
PHP files in order to not actually parse the expression again.

To implement this feature, we'll need to have the possibility to convert each node in a
syntax tree into a corresponding PHP expression. For this, let's start by extending our
Packt\Chp8\DSL\AST\Expression interface by a new method:

namespace Packt\Chp8\DSL\AST;

interface Expression
{
 public function evaluate(array $variables = []);

 public function compile(): string;
}

The downside of this approach is that you'll now need to implement this method for each
and every single one of the classes that implement this interface. Let's start with something
simple: the Packt\Chp8\DSL\AST\Number class. As each Number implementation will
always evaluate to the same number (3 will always evaluate to 3 and never to 4), we can
simply return the numeric value:

namespace Packt\Chp8\DSL\AST;

abstract class Number implements Expression
{
 public function compile(): string
 {
 return var_export($this->evaluate(), true);
 }
}

As for the remaining node types, we'll need methods that return an implementation of each
expression type in PHP. For example, for the Packt\Chp8\DSL\AST\Addition class, we
could add the following compile() method:

namespace Packt\Chp8\DSL\AST;

class Addition extends BinaryOperation
{

Building a Parser and Interpreter for a Custom Language

[275]

 // ...

 public function compile(): string
 {
 return '(' . $this->left->compile() . ') + (' .
$this->right->compile() . ')';
 }
}

Proceed similarly for the remaining arithmetic operations: Subtraction,
Multiplication, and Division, and also the logical operations such as Equals,
NotEquals, And, and Or.

For the Condition class, you can use PHP's ternary operator:

namespace Packt\Chp8\DSL\AST;

class Condition implements Expression
{
 // ...

 public function compile(): string
 {
 return sprintf('%s ? (%s) : (%s)',
 $this->when->compile(),
 $this->then->compile(),
 $this->else->compile()
);
 }
}

The NamedVariable class is difficult to adjust; the class' evaluate() method currently
throws UnknownVariableException when a non-existing variable is referenced.
However, our compile() method needs to return a single PHP expression. And looking up
a value and also throwing an exception cannot be done in a single expression. Luckily, you
can instantiate classes and call methods on them:

namespace Packt\Chp8\DSL\AST;

use Packt\Chp8\DSL\Exception\UnknownVariableException;

class NamedVariable implements Variable
{
 // ...

 public function evaluate(array $variables = [])
 {

Building a Parser and Interpreter for a Custom Language

[276]

 if (isset($variables[$this->name])) {
 return $variables[$this->name];
 }
 throw new UnknownVariableException();
 }

 public function compile(): string
 {
 return sprintf('(new %s(%s))->evaluate($variables)',
 __CLASS__,
 var_export($this->name, true)
);
 }
}

Using this workaround, the a * 3 expression would be compiled to the following PHP
code:

(new \Packt\Chp8\DSL\AST\NamedVariable('a'))->evaluate($variables) * 3

This just leaves the PropertyFetch class. You might remember that this class was a bit
more complex than the other node types, as it implemented quite a few different
contingencies on how to look up properties from objects. In theory, this logic could be
implemented in a single expression using ternary operators. This would result in the
foo.bar expression being compiled to the following monstrosity:

is_object((new
\Packt\Chp8\DSL\AST\NamedVariable('foo'))->evaluate($variables)) ?
((is_callable([(new
\Packt\Chp8\DSL\AST\NamedVariable('foo'))->evaluate($variables), 'getBar'])
? (new
\Packt\Chp8\DSL\AST\NamedVariable('a'))->evaluate($variables)->getBar() :
((is_callable([(new
\Packt\Chp8\DSL\AST\NamedVariable('foo'))->evaluate($variables), 'isBar'])
? (new
\Packt\Chp8\DSL\AST\NamedVariable('a'))->evaluate($variables)->isBar() :
(new \Packt\Chp8\DSL\AST\NamedVariable('a'))->evaluate($variables)['bar']
?? null)) : (new
\Packt\Chp8\DSL\AST\NamedVariable('foo'))->evaluate($variables)['bar']

In order to prevent the compiled code from getting overly complicated, it's easier to refactor
the PropertyFetch class a little bit. You can extract the actual property lookup method in
a static method that can be called from both the evaluate() method and the compiled
code:

<?php
namespace Packt\Chp8\DSL\AST;

Building a Parser and Interpreter for a Custom Language

[277]

class PropertyFetch implements Variable
{
 private $left;
 private $property;

 public function __construct(Variable $left, string $property)
 {
 $this->left = $left;
 $this->property = $property;
 }

 public function evaluate(array $variables = [])
 {
 $var = $this->left->evaluate($variables);
 return static::evaluateStatic($var, $this->property);
 }

 public static function evaluateStatic($var, string $property)
 {
 if (is_object($var)) {
 $getterMethodName = 'get' . ucfirst($property);
 if (is_callable([$var, $getterMethodName])) {
 return $var->{$getterMethodName}();
 }
 $isMethodName = 'is' . ucfirst($property);
 if (is_callable([$var, $isMethodName])) {
 return $var->{$isMethodName}();
 }
 return $var->{$property} ?? null;
 }
 return $var[$property] ?? null;
 }
 public function compile(): string
 {
 return __CLASS__ . '::evaluateStatic(' . $this->left->compile() .
', ' . var_export($this->property, true) . ')';
 }
}

This way, the foo.bar expression will simply evaluate to this:

\Packt\Chp8\DSL\AST\PropertyFetch::evaluateStatic(
 (new \Packt\Chp8\DSL\AST\NamedVariable('foo'))->evaluate($variables),
 'bar'
)

Building a Parser and Interpreter for a Custom Language

[278]

In the next step, we can add an alternative to the previously introduced
ExpressionBuilder class that transparently compiles expressions, saves them in a cache,
and reuses the compiled versions when necessary.

We'll call this class Packt\Chp8\DSL\CompilingExpressionBuilder:

<?php
namespace Packt\Chp8\DSL;

class CompilingExpressionBuilder
{
 /** @var string */
 private $cacheDir;
 /**
 * @var ExpressionBuilder
 */
 private $inner;

 public function __construct(ExpressionBuilder $inner, string $cacheDir)
 {
 $this->cacheDir = $cacheDir;
 $this->inner = $inner;
 }
}

As we don't want to re-implement the ExpressionBuilder's parsing logic, this class
takes an instance of ExpressionBuilder as a dependency. When a new expression is
parsed that is not yet present in the cache, this inner expression builder will be used to
actually parse this expression.

Let's continue by adding a parseExpression method to this class:

public function parseExpression(string $expr): Expression
{
 $cacheKey = sha1($expr);
 $cacheFile = $this->cacheDir . '/' . $cacheKey . '.php';
 if (file_exists($cacheFile)) {
 return include($cacheFile);
 }

 $expr = $this->inner->parseExpression($expr);

 if (!is_dir($this->cacheDir)) {
 mkdir($this->cacheDir, 0755, true);
 }

 file_put_contents($cacheFile, '<?php return new class implements

Building a Parser and Interpreter for a Custom Language

[279]

'.Expression::class.' {
 public function evaluate(array $variables=[]) {
 return ' . $expr->compile() . ';
 }
 public function compile(): string {
 return ' . var_export($expr->compile(), true) . ';
 }
 };');
 return $expr;
}

Let's have a look at what happens in this method: first, the actual input string is used to
calculate a hash value, uniquely identifying this expression. If a file with this name exists in
the cache directory, it will be included as a PHP file, and the file's return value will return as
the method's return value:

$cacheKey = sha1($expr);
$cacheFile = $this->cacheDir . '/' . $cacheKey;
if (file_exists($cacheFile)) {
 return include($cacheFile);
}

As the method's type hint specified that the method needs to return an instance of the
Packt\Chp8\DSL\AST\Expression interface, the generated cache files also need to return
an instance of this interface.

If no compiled version of the expression could be found, the expression is parsed as usual
by the inner expression builder. This expression is then compiled to a PHP expression using
the compile() method. This PHP code snippet is then used to write the actual cache file. In
this file, we're creating a new anonymous class that implements the expression interface,
and in its evaluate() method contains the compiled expression.

Anonymous classes are a feature added in PHP 7. This feature allows you
to create objects that implement an interface or extend an existing class
without needing to explicitly define a named class for this. Syntactically,
this feature can be used as follows:
$a = new class implements SomeInterface {
 public function test() {
 echo 'Hello';
 }
};
$a->test();

Building a Parser and Interpreter for a Custom Language

[280]

This means that the foo.bar * 3 expression would create a cache file with the following
PHP code as its contents:

<?php
return new class implements Packt\Chp8\DSL\AST\Expression
{
 public function evaluate(array $variables = [])
 {
 return (Packt\Chp8\DSL\AST\PropertyFetch::evaluateStatic(
 (new
Packt\Chp8\DSL\AST\NamedVariable('foo'))->evaluate($variables),
 'bar'
)) * (3);
 }

 public function compile(): string
 {
 return '(Packt\\Chp8\\DSL\\AST\\PropertyFetch::evaluateStatic((new
Packt\\Chp8\\DSL\\AST\\NamedVariable('foo'))->evaluate($variables),
'bar'))*(3)';
 }
};

Interestingly, the PHP interpreter itself works much the same way. Before actually
executing PHP code, the PHP interpreter compiles the code into an intermediate
representation or Bytecode, which is then interpreted by the actual interpreter. In order to
not parse the PHP source code over and over again, the compiled bytecode is cached; this is
how PHP's opcode cache works.

As we're saving our compiled expressions as PHP code, these will also be compiled into
PHP bytecode and cached in the opcode cache for even more performance again. For
example, the previous cached expression's evaluate method evaluates to the following PHP
bytecode:

Building a Parser and Interpreter for a Custom Language

[281]

The PHP bytecode generated by the PHP interpreter

Verifying performance improvements
The motivation for implementing the compilation to PHP was to increase the parser's
performance. As a last step, we'll now try to verify that the caching layer does actually
increase the performance of the parser.

For this, you can use the PHPBench package that you can install using composer:

 $ composer require phpbench/phpbench

PHPBench offers a framework for benchmarking single units of code in isolation (in that
respect being similar to PHPUnit, only for benchmarks instead of tests). Each benchmark is
a PHP class that contains scenarios as methods. The name of each scenario method needs to
start with bench.

Start by creating a bench.php file in your root directory with the following contents:

require 'vendor/autoload.php';

use Packt\Chp8\DSL\ExpressionBuilder;
use Packt\Chp8\DSL\CompilingExpressionBuilder;

Building a Parser and Interpreter for a Custom Language

[282]

class ParserBenchmark
{
 public function benchSimpleExpressionWithBasicParser()
 {
 $builder = new ExpressionBuilder();
 $builder->parseExpression('a = 2')->evaluate(['a' => 1]);
 }
}

You can then run this benchmark using the following command:

 vendor/bin/phpbench run bench.php --report default

This should generate a report such as the following one:

Currently, PHPBench runs the benchmark function exactly once and measures the time that
it took to execute this function. In this case, it is about 2 milliseconds. This is not very
precise, because micro-measurements such as these can vary quite a lot, depending on other
things happening on your computer at the same time. For this reason, it's usually better to
execute the benchmark function multiple times (let's say, a few hundred or thousand times)
and then compute the average execution time. Using PHPBench, you can do this easily by
adding a @Revs(5000) annotation to your benchmark class' DOC comment:

/**
 * @Revs(5000)
 */
class ParserBenchmark
{
 // ...
}

This annotation will cause PHPBench to actually run this benchmark function 5000 times
and then compute the average runtime.

Building a Parser and Interpreter for a Custom Language

[283]

Let's also add a second scenario in which we're using the new
CompilingExpressionBuilder with the same expression:

/**
 * @Revs(5000)
 */
class ParserBenchmark
{
 public function benchSimpleExpressionWithBasicParser()
 {
 $builder = new ExpressionBuilder();
 $builder->parseExpression('a = 2')->evaluate(['a' => 1]);
 }

 public function benchSimpleExpressionWithCompilingParser()
 {
 $builder = new CompilingExpressionBuilder();
 $builder->parseExpression('a = 2')->evaluate(['a' => 1]);
 }
}

Run the benchmark again; this time benchmarking both parsers and with 5000 iterations:

As you can see here, parsing and evaluating the a = 2 expression takes our regular parser
about 349 microseconds, on average (and about 20 megabytes of RAM). Using the
compiling parser takes only about 33 microseconds (that's a runtime reduction of about
90%) and only 5 MB's of RAM (or about 71%).

Now, a=2 might not really be the most representative benchmark, because actual
expressions used in a real-life use case might get a little more complex.

Building a Parser and Interpreter for a Custom Language

[284]

For a more realistic benchmark, let's add two more scenarios, this time with a more complex
expression:

public function benchComplexExpressionBasicParser()
{
 $builder = new ExpressionBuilder();
 $builder
 ->parseExpression('when (customer.age = 1 and cart.value = 200)
then cart.value * 0.1 else cart.value * 0.2')
 ->evaluate(['customer' => ['age' => 1], 'cart' => ['value' =>
200]]);
}

public function benchComplexExpressionCompilingParser()
{
 $builder = new CompilingExpressionBuilder(new ExpressionBuilder(),
'cache/auto');
 $builder
 ->parseExpression('when (customer.age = 1 and cart.value = 200)
then cart.value * 0.1 else cart.value * 0.2')
 ->evaluate(['customer' => ['age' => 1], 'cart' => ['value' =>
200]]);
}

Run the benchmark again and have a new look at the results:

Building a Parser and Interpreter for a Custom Language

[285]

That's even better than before! Using the regular parser for parsing the when
(customer.age = 1 and cart.value = 200) then cart.value * 0.1 else

cart.value * 0.2 expression takes about 2.5 milliseconds (remember we were talking
about microseconds in the last benchmark), while only 50 microseconds are using the
optimized parser! That's an improvement of about 98%.

Summary
In this chapter, you learned how to use the PHP-PEG library to implement a parser,
interpreter, and compiler for a custom expression language. You also learned how to define
grammars for such languages and how you can use them to develop domain-specific
languages. These can be used to offer end-user development features in large software
systems, which allow users to customize their software's business rules to a large extent.

Dynamically modifying a program using domain-specific languages can be a strong selling
point, especially in enterprise systems. They allow users to modify a program's behavior by
themselves, without having to wait for a developer to change a business rule and trigger a
lengthy release process. This way, new business rules can be implemented quickly and
allow your customers to react quickly to changing requirements.

9
Reactive Extensions in PHP

In this chapter, we'll talk about Reactive extensions in PHP, a PHP library that allows PHP
programmers to work with PHP in a reactive manner, and how to use in event, also known
as publish-subscribe programming. We'll also discuss the idea of functional programming
in PHP and how to program in a more succinct way. We will also discuss the following
topics:

Map
Reduce
Defer
Reactive extensions in the following use cases:

Data analysis of logs (parsing Apache logs)
Queueing systems (asynchronously working through a queue of
tasks)
Events

Reactive extensions are a way to code in a functional way using PHP. They are a set of
libraries (available on GitHub at h t t p s : / / g i t h u b . c o m / R e a c t i v e X / R x P H P) that can help
you compose event-based programs by using observable collections and LINQ-style query
operators in PHP.

An introduction to observables
In short, you will be doing event-driven programming, where you will work with what's
called as the event loop, and attaching (hooking up) events to do your bidding.

Installation is a simple composer that is required is all.

https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP
https://github.com/ReactiveX/RxPHP

Reactive Extensions in PHP

[287]

How does Reactive PHP work? In PHP, there is no such way to create a server except when
running the code php -S localhost:8000. PHP will treat the current directory as the
basis of the public directory (in Apache, usually this is /var/www or C:/xampp/htdocs
when using XAMPP). This, by the way, has been available since PHP 5.4.0 only and also
works with PHP 7.x.

There is no programmable way to control how that PHP command-line interface's server
actually works.

Every time you send a request to that server, PHP server will be in charge of handling
whether it's a valid request, and handle the event by itself. In short, every request is a new
request-there's no streaming or events that get involved.

RxPHP works by creating an event loop by creating a PHP stream under the hood, which
has added functions that help make Reactive Programming possible. The stream basically
has a recursive function (a function that keeps calling itself and creates a loop of commands,
in essence). An event loop is basically a programming construct that runs an infinite loop,
which simply waits for events and be able to react (in other words, run some function) to
each of those events.

Introduction to event loop and ReactiveX
The best way to get acquainted with event loop is through a popular library in the
JavaScript world, that is, jQuery.

If you have experience working with jQuery, you can simply create (or chain) events to a
simple DOM selector and then write code to handle those specific events. For example, you
could create an onClick event by attaching it to a specific link and then code what will
happen when that link is clicked.

If you're familiar with jQuery, the code to control a link that has the ID someLink would
look something like the following:

HTML:

< a href="some url" id="someLink">

JavaScript:

$("#someLink").on('click', function() {
 //some code here
});

Reactive Extensions in PHP

[288]

In the preceding code snippet, every time jQuery finds an element with an ID of someLink,
it will do something on each click event.

As it is in an event loop, it will loop over each iteration of the event loop and work on what
needs to be done.

However, it is a little bit different in Reactive Programming, which is a form of functional
programming. Functional programming is about keeping functions as pure as possible and
does not have side effects. Another aspect of functional programming is immutability, but
we'll discuss that in another part.

In Reactive Programming, we basically have the concept of Observables and Observers.

An Observable emits events in the form of data, and an Observer subscribes to the
Observable in order to receive its events.

The point of programming using Reactive extensions is to be able to program in a more
functional manner. Instead of programming a while, for loop we instead invoke an event
loop, which will track the Observers and their Observables (subscribers). The good thing
about programming in this way is that there is a way to treat data as data that streams into
your program over time. By feeding information this way, we can now make event-based or
event-driven programs, where your code will react.

With this you can create programs that run forever in the background and just Reactive
extensions.

Let's discuss some available functions of Reactive extensions:

delay
defer
scheduler
recursive-scheduler
map and flatMap
reduce
toArray
merge
do
scan
zip

Reactive Extensions in PHP

[289]

delay
The delay function in RxPHP is used as follows:

<?php
require_once __DIR__ . '/../bootstrap.php';

$loop = new \React\EventLoop\StreamSelectLoop();

$scheduler = new \Rx\Scheduler\EventLoopScheduler($loop);

\Rx\Observable::interval(1000, $scheduler)
 ->doOnNext(function ($x) {
 echo "Side effect: " . $x . "\n";
 })
 ->delay(500)
 ->take(5)
 ->subscribe($createStdoutObserver(), $scheduler);

$loop->run();

In the preceding code, we create an EventLoopScheduler, which will help us schedule the
execution of code by an interval of 1,000 milliseconds. The delay function is given 500
milliseconds to execute, and a take function will only take 5 milliseconds before finally
subscribing.

defer
The defer function waits for X number of iterations before doing what is to be done:

<?php

require_once __DIR__.'/../bootstrap.php';

$source = \Rx\Observable::defer(function () {
 return \Rx\Observable::just(42);
});

$subscription = $source->subscribe($stdoutObserver);
?>

Reactive Extensions in PHP

[290]

In the preceding code, we create an Observable object, which will return 42 when the defer
function is called. The defer function s a type of promise and returns an Observable, and
the code inside it will be executed in an asynchronous manner. When the Observable is
subscribed to, the functions are in a way tied together or bound to each other and then get
invoked or triggered.

What is an Observable, you might ask? In ReactiveX, an Observer subscribes to an
Observable. An Observer then reacts to whatever item or sequence of items that the
Observable emits.

This means that when you have a bunch of events that are being sent to your application,
but handle them in an asynchronous manner, meaning not necessarily in the order that they
may have come in.

In the preceding code, stdoutObserver is an observer that puts out whatever is in the
event loop or the Observable into the stdout or console log.

Scheduler
Schedulers work with three main components: an execution context, which is the ability to
do the job given to it; the execution policy is how it will be ordered; and there's the clock or
timer or the underlying system which measures time, which is needed to schedule when it
will be executed.

The scheduler code is used as follows:

$loop = \React\EventLoop\Factory::create();
$scheduler = new \Rx\Scheduler\EventLoopScheduler($loop);

It basically creates an eventScheduler, which executes the event loop and parameterizes
the concurrency level. A simple scheduler within RxPHP is used in the preceding delay.

recursive-scheduler
This is how the recursive-scheduler function is used:

<?php

require_once __DIR__ . '/../bootstrap.php';

use Rx\Observable;

Reactive Extensions in PHP

[291]

class RecursiveReturnObservable extends Observable
{
 private $value;

 /**
 * @param mixed $value Value to return.
 */
 public function __construct($value)
 {
 $this->value = $value;
 }

 public function subscribe(\Rx\ObserverInterface $observer, $scheduler =
null)
 {
 return $scheduler->scheduleRecursive(function ($reschedule) use
($observer) {
 $observer->onNext($this->value);
 $reschedule();
 });
 }
}

$loop = React\EventLoop\Factory::create();
$scheduler = new Rx\Scheduler\EventLoopScheduler($loop);

$observable = new RecursiveReturnObservable(42);
$observable->subscribe($stdoutObserver, $scheduler);

$observable = new RecursiveReturnObservable(21);
$disposable = $observable->subscribe($stdoutObserver, $scheduler);

$loop->addPeriodicTimer(0.01, function () {
 $memory = memory_get_usage() / 1024;
 $formatted = number_format($memory, 3) . 'K';
 echo "Current memory usage: {$formatted}\n";
});

// after a second we'll dispose the 21 observable
$loop->addTimer(1.0, function () use ($disposable) {
 echo "Disposing 21 observable.\n";
 $disposable->dispose();
});

$loop->run();

Reactive Extensions in PHP

[292]

The preceding code works by adding several scheduler timers, which then recursively or
repeatedly return an Observable and then subscribe to it afterward. The preceding code will
generate 21 Observables.

Here's what happens after 1 second:

//Next value: 21
//Next value: 42
//Next value: 21
//Next value: 42
//Next value: 21

After this, it will dispose the Observables and finally print out the memory usage:

//Disposing 21 observable.
//Next value: 42
//Next value: 42
//Next value: 42
//Next value: 42
//Next value: 42
//Current memory usage: 3,349.203K

map and flatMap
A map is a simple function that takes another function and loops through or iterates through
a bunch of elements (an Array), and applies or invokes the function passed into each of
those elements.

A flatMap, on the other hand, subscribes to the Observable as well, meaning that you no
longer have to take care of.

reduce
The reduce function simply applies a function to Observables coming in. In short, it takes a
bunch of Observables and applies a function to all of them in a sequential manner, applying
one to the next result.

Here is an example of how to use a reduce function:

<?php

require_once __DIR__ . '/../bootstrap.php';

Reactive Extensions in PHP

[293]

//Without a seed
$source = \Rx\Observable::fromArray(range(1, 3));

$subscription = $source
 ->reduce(function ($acc, $x) {
 return $acc + $x;
 })
 ->subscribe($createStdoutObserver());

toArray
The toArray function lets you manipulate Observables and create an array from them. The
code to use toArray looks like this:

<?php

use Rx\Observer\CallbackObserver;

require_once __DIR__ . '/../bootstrap.php';

$source = \Rx\Observable::fromArray([1, 2, 3, 4]);

$observer = $createStdoutObserver();

$subscription = $source->toArray()
 ->subscribe(new CallbackObserver(
 function ($array) use ($observer) {
 $observer->onNext(json_encode($array));
 },
 [$observer, "onError"],
 [$observer, "onCompleted"]
));

In the preceding code, we first create an Observable based on the Array [1,2,3,4].

This allows us to work with the values of an array and subscribe to them using the
Observer. In ReactiveX programming, every Observer only works with Observables. In
short, the toArray function allows us to create Observers that subscribe to a source array.

Reactive Extensions in PHP

[294]

merge
The merge function is simply an operator that combines multiple Observables into one by
merging their emissions.

Any onError notification from any of the source Observables will be immediately passed
through to the Observers. This will terminate the merged Observable:

<?php

require_once __DIR__ . '/../bootstrap.php';

$loop = React\EventLoop\Factory::create();
$scheduler = new Rx\Scheduler\EventLoopScheduler($loop);

$observable = Rx\Observable::just(42)->repeat();
$otherObservable = Rx\Observable::just(21)->repeat();
$mergedObservable = $observable
 ->merge($otherObservable)
 ->take(10);

$disposable = $mergedObservable->subscribe($stdoutObserver, $scheduler);

$loop->run();

do
The do function simply registers an action to take upon a variety of Observable life cycle
events. Basically, you will register callbacks that ReactiveX will call only when certain
events take place in the Observable. The callbacks will be called independently from the
normal set of notifications. There are various operators that RxPHP have designed to allow
this:

<?php

require_once __DIR__ . '/../bootstrap.php';

$source = \Rx\Observable::range(0, 3)
 ->doOnEach(new \Rx\Observer\CallbackObserver(
 function ($x) {
 echo 'Do Next:', $x, PHP_EOL;
 },
 function (Exception $err) {
 echo 'Do Error:', $err->getMessage(), PHP_EOL;
 },

Reactive Extensions in PHP

[295]

 function () {
 echo 'Do Completed', PHP_EOL;
 }
));

$subscription = $source->subscribe($stdoutObserver);

scan
The scan operator applies a function to each item that an Observable emits. It applies this
sequentially and emits each successive value:

<?php

require_once __DIR__ . '/../bootstrap.php';

//With a seed
$source = Rx\Observable::range(1, 3);

$subscription = $source
 ->scan(function ($acc, $x) {
 return $acc * $x;
 }, 1)
 ->subscribe($createStdoutObserver());

Here is an example of scan without a seed:

<?php

require_once __DIR__ . '/../bootstrap.php';

//Without a seed
$source = Rx\Observable::range(1, 3);

$subscription = $source
 ->scan(function ($acc, $x) {
 return $acc + $x;
 })
 ->subscribe($createStdoutObserver());

Reactive Extensions in PHP

[296]

zip
The zip method returns an Observable and applies a function of your choosing to the
combination of items emitted in sequence. The results of this function will become the items
emitted by the returned Observable:

<?php

require_once __DIR__ . '/../bootstrap.php';

//With a result selector
$range = \Rx\Observable::fromArray(range(0, 4));

$source = $range
 ->zip([
 $range->skip(1),
 $range->skip(2)
], function ($s1, $s2, $s3) {
 return $s1 . ':' . $s2 . ':' . $s3;
 });

$observer = $createStdoutObserver();

$subscription = $source->subscribe($createStdoutObserver());

In the following sample code, we use zip without a result selector:

<?php

use Rx\Observer\CallbackObserver;

require_once __DIR__ . '/../bootstrap.php';

//Without a result selector
$range = \Rx\Observable::fromArray(range(0, 4));

$source = $range
 ->zip([
 $range->skip(1),
 $range->skip(2)
]);

$observer = $createStdoutObserver();

$subscription = $source
 ->subscribe(new CallbackObserver(
 function ($array) use ($observer) {

Reactive Extensions in PHP

[297]

 $observer->onNext(json_encode($array));
 },
 [$observer, "onError"],
 [$observer, "onCompleted"]
));

Parsing logs through a Reactive scheduler
It is difficult to just have theoretical knowledge of Reactive extensions and functional
programming techniques and not be able to know when it can be used. In order to apply
our knowledge, let's take a look at the following scenario.

Let's assume we have to read an Apache log file in an asynchronous manner.

An Apache log line looks like this:

111.222.333.123 HOME - [01/Feb/1998:01:08:39 -0800] "GET /bannerad/ad.htm
HTTP/1.0"
200 198 "http://www.referrer.com/bannerad/ba_intro.htm""Mozilla/4.01
(Macintosh; I; PPC)"

111.222.333.123 HOME - [01/Feb/1998:01:08:46 -0800] "GET /bannerad/ad.htm
HTTP/1.0"
200 28083 "http://www.referrer.com/bannerad/ba_intro.htm""Mozilla/4.01
(Macintosh; I; PPC)"

Let's dissect the parts of each line.

First, we have the IP address. It has three dots in between some numbers. Second, we have
the field that logs the domain of the server.

Third, we have the date and time. Then we get the string, which says what was accessed
and using what HTTP protocol. The status is 200, followed by the process ID and, finally,
the name of the requestor, also known as the referrer.

When reading the Apache logs, we just want the IP address, the URL, and the date and time
of access, and we also want to know what browser was used.

We know we can dissect the data into the spaces between them, so let's just change the logs
into arrays split by the following method:

<?php
function readLogData($pathToLog) {
$logs = [];
$data = split('\n', read($pathToLog);) //log newlines

Reactive Extensions in PHP

[298]

foreach($data as line) {
$logLine = split('',$line);
 $ipAddr = $logLine[0];
 $time = $logLine[3];
$accessedUrl = $logLine[6];
 $referrer = $logLine[11];
 $logs[] = [
'IP' => $ipAddr,
'Time' => $time,
'URL' => $accessedUrl,
'UserAgent' => $referrer
];

}
return $logs;
}

Let's add an Observable so that we can execute the preceding function asynchronously,
meaning it will work by reading the log file every hour.

The code would look like this:

$loop = React\EventLoop\StreamSelectLoop;
$scheduler = new Rx\Scheduler\EventLoopScheduler($loop);

$intervalScheduler = \Rx\Observable::interval(3600000, $scheduler);

//execute function to read logFile:
$intervalScheduler::defer(function() {
readLogData('/var/log/apache2/access.log');
})->subscribe($createStdoutObserver());

Event queues with ReactiveX
An event queue would simply ensure that things that are to be done in a synchronous
manner or in a first-in first-out manner. Let's define first what a queue is.

A queue is basically a list of things to do, which will get executed one by one until all the
things in the queue have been finished.

In Laravel, for example, there is already a concept of queues, where we go through the
elements of the queue. You can find the documentation at h t t p s : / / l a r a v e l . c o m / d o c s / 5 . /

q u e u e s.

https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues
https://laravel.com/docs/5.0/queues

Reactive Extensions in PHP

[299]

Queues are usually used in systems that need to do some tasks in order and not in an
asynchronous function. In PHP, there is already the SplQueue class, which provides the
main functionalities of a queue implemented using a doubly linked list.

In general, queues are executed in the order that they come in. In ReactiveX, things are
more of an asynchronous nature. In this scenario, we will implement a priority queue,
where each task has corresponding levels of priority.

This is what a simple PriorityQueue code in ReactiveX would look like:

use \Rx\Scheduler\PriorityQueue;

Var $firstItem = new ScheduledItem(null, null, null, 1, null);

var $secondtItem = new ScheduledItem(null, null, null, 2, null);
$queue = new PriorityQueue();
$queue->enqueue($firstItem);
$queue->enqueue($secondItem);
//remove firstItem if not needed in queue
$queue->remove($firstItem);

In the preceding code, we used the PriorityQueue library of RxPHP. We set some
schedulers and queued them in a PriorityQueue. We gave each scheduled item a priority
or time to spend in execution with 1 and 2. In the preceding scenario, the first item will
execute first because it is the first priority and has the shortest time (1). Finally, we remove
the ScheduledItem just to show what's possible with PriorityQueue in the RxPHP
library.

Summary
You learned to work with the Reactive extensions library, RxPHP. Reactive Programming is
all about using Observables and Observers, which is similar to working with subscribers
and publishers.

You learned how to use delay, defer, map, and flatMap, among other operators, and how
to use a scheduler.

You also learned how to read an Apache log file and schedule it to read after every hour
and how to work with RxPHP's PriorityQueue class.

Index

A
Abstract Syntax Tree (AST)
 building 249, 252, 253
abstraction class
 iterate_over method 22
 last_of method 22
 searchString method 23
admin system
 about 13, 16
 building, for managing purchase 38, 39, 40
 creating 75, 80
 Elasticsearch 80
 Elasticsearch, installing 81, 82
 PHP client, installing 81, 82
 post table, seeding 80
AJAX Socket chat for support
 socket.io 66, 67, 68, 69, 71, 72
Apache logs
 parsing, through Reactive scheduler 297
 storing, in Elasticsearch 92
Apache Lucene 87
authentication system
 about 42, 43, 45, 46
 building 41
 marketers dashboard 56, 57
 member dashboard 52, 55
 social login for members, creating 47, 49, 51
authentication
 adding 183
 authorization, checking 188, 190
 login form, creating 184, 185
 users and messages, connecting 190, 192

B
bcrypt 42
browser-compatible version

 reference link 105
built-in PHP server
 reference link 9

C
cache invalidation process
 ban 103
 purge 103
 refresh method 103
cache
 basics 103
 browser localStorage, using as 104, 105
 invalidation, of Redis data 103, 104
Carriage Return (CR) 181
chat application
 building 165, 166, 168, 169
 connection timing out 173
 connection, timing out 172
 HTML user interface, bootstrapping 164
 implementing 162
 messages, receiving 170
 messages, sending 171
 project server-side, bootstrapping 162
 testing 171
checkout service
 about 193
 building 209
 promises, working with 211, 216
 PUSH/PULL for beginners 224
 react/zmq, using 209
compiler
 adding, for interpreter optimization 273, 276,

278, 280
 working 238
Composer 67, 155
Content Negotiation 114
create method 19

[301]

Create-Read-Update-Delete (CRUD)
 about 18
 creating 75
 system 80
curl 187

D
database abstraction class
 building 19
 create method 20
 delete method 21
 first_of method 22
 raw query method 19
 read method 20
 select all method 20
 update method 21
deployment options 174, 176
Docker 156
domain-specific languages 237

E
ECMAScript 6 98
Elasticsearch logs
 viewing, with dashboard app 99
Elasticsearch
 Apache logs, storing 92, 93
 documents, adding 87, 88
 installing 81, 82, 85
 PHP Elasticsearch tool, building 85
 querying 88
 reference link 81
 used, for searching social network database 108,

110

end-user development 237
Equals node 260
event loop 287, 288
event queues
 using, with ReactiveX 298
expressions
 evaluating 246, 248

F
Faker
 reference link 80
functions, Reactive extensions

 defer 289, 290
 delay 289
 do 294
 flatMap 292
 map 292
 merge 294
 recursive-scheduler 290, 292
 reduce 292
 scan 295
 scheduler 290
 toArray 293
 zip 296

G
Garbage Collector 182
grammar 239, 240, 241
grokking 99

H
Highcharts
 about 93
 reference link 93
 used, for displaying filtered data 93, 96, 98
homebrew
 reference link 82
htaccess apache rule 38
HTTP request methods
 DELETE 115
 GET 115
 HEAD 115
 OPTIONS 115
 POST 115
 PUT 115
HTTP response status code
 200 OK 116
 201 Created 116
 202 Accepted 116
 400 Bad request 116
 401 Unauthorized 116
HTTPie 187
Hypertext Transfer Protocol (HTTP)
 about 114
 and ZeroMQ, bridging 230, 233, 234

[302]

I
ILog 93
ingestion workhorse 88
input data, checkout process
 cart 193
 contact data 193
interface
 building 254, 255
interpreter
 optimizing, by adding compiler 273, 280
 working 238
inventory service
 about 194
 building 198
 JsonRPC, used for communication 200, 201,

202, 204
 making multithreaded 206, 207, 208
 ZeroMQ REQ/REP sockets, using 198
inverted index 87

J
JavaScript Object Notation (JSON)
 about 89
 decoding 91
 messages, encoding 91

K
key components, RESTful Web Service
 addressability 114
 decoupling of resources and representation 114
 statelessness 114
 uniform interface 114
Kibana dashboard 92

L
languages 239, 240, 241
lexer 238
Line Feed (LF) 181
localStorage 104
logical expressions
 adding 259
 and operator 263, 264
 comparisons 260, 262
 conditions 265, 266, 267

 or operator 264
 or operators 263
Logstash agent 82
Logstash
 about 87
 configuration, setting up 89
 installing 88
 reference link 88

M
mailing service
 about 194
 building 219
marketers dashboard
 about 56
 administration system, for managing marketers

57, 58, 59
 AJAX Socket chat for support 66
 custom template, creating for newsletter 60, 61,

62

 link tracking system 63, 64
 marketers dashboard 66
 reference link 58
Microservice architectures 193
Monolog 90
MySQL
 reference link 52

N
Nginx 156
non-terminal symbols 239
null coalesce operator 7
Number nodes 256

O
Oauth
 reference link 47
objects
 working with 271, 272
observables 286, 288
Observers 288

P
parser 238

[303]

parsing expression grammar (PEG) 239
PECL
 website link 197
PEG parser
 about 242, 246
performance improvements
 verifying 281, 282, 285
PHP Redis
 installation link 101
 installing 89, 90
PHP Stream
 GridFS storage, using 149, 150, 151
 profile image, uploading 145, 146, 149
php-zmq extension 197
PHP
 used, for searching XML document 108
 used, for storing XML documents 108
PHPBench 281
pip 118
Postman
 about 82
 reference link 82
profile input form
 creating 10
project
 bootstrapping 197

R
Ratchet
 about 153
 and PSR-7 applications, bridging 176, 178
 architectural considerations 154
 event loop, playing with 159, 161
 reference link 66
 using 155, 156, 157
 using, steps 154
 WebSocket application, testing 158
reactive extensions
 reference link 286
Reactive Programming 287
Reactive scheduler
 Apache logs, parsing through 297
ReactiveX
 about 287
 using with event queues 298

ReactPHP 210
Redis 87
regex 61
Remote Procedure Call (RPC) 200
Representational State Transfer (REST)

architectures 114
REST service
 bootstrapping 125
 designing 124
 implementing 124
 input, validating 143
 persistence layer, building with MongoDB 127,

129, 132
 profiles, deleting 140
 users, adding 132
 users, listing 137, 138
 users, retrieving 132
 users, searching 137, 138
RESTful Web Services
 basics 114
 HTTP methods 115
RFC 6455 153
RFC
 reference link 16
ROUTER/DEALER pattern 206
RxPHP 287

S
scanner 238
search engine
 implementing, with result caching 101
searchString method
 convert_to_json method, used for implementing

simple API 23
Separation of Concerns 8
sessions
 reference link 28
Shared Nothing 155
shipping service
 building 223
 fan-out/fan-in pattern 228, 229
 PUSH/PULL for beginners 223, 225
Shopping Cart
 about 18
 checkboxes, adding to Shopping List page 27,

28

 Checkout page, building 29
 cookies, in PHP 28
 features 24
 shopping items list, building 24
 Thank you page 32, 33
shopping items list
 building 24
 Item template rendering function 24
Slim framework
 about 178
 HTTP requests, accepting with message body

119

 installing 116
 middleware 122, 123
 PSR-7 standard 120, 122
 sample application 117, 118
 URL parameters, accepting 118
 using 116
social network database
 randomized search engine results, displaying

110

 searching, with Elasticsearch 108, 110
streams
 reference link 106
 used, for processing large files 145
 working with 106
structured data
 working with 268, 269, 270

T
target architecture 193
TCPDF
 download link 33
 installing 33, 36
terminal symbols 239
tokenizer 238
tokenizing 87
transport 88
TTPie 118

U
Uniform Resource Identifier (URI) 114
Unix Timestamp
 reference link 29
upsert 79

V
Variable node 256
variables
 evaluating 256, 257
views
 creating 8, 9, 10

W
web server
 application, accessing via 182
WebSocket protocol 153
WebSockets
 about 153
 reference link 66, 67
wscat tool 158

X
XAMPP 287
XML documents
 searching, with PHP 108
 storing, with PHP 108
XML TO JSON Converter tool
 reference link 108

Z
ZeroMQ patterns
 about 195
 publish/subscribe pattern 196
 push/pull pattern 196, 197
 request/reply pattern 195
ZeroMQ
 about 193
 and HTTP, bridging 230, 233, 235

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Create a User Profile System and use the Null Coalesce Operator
	The null coalesce operator
	Separation of Concerns
	Creating views
	Create a profile input form
	Admin system
	Summary

	Chapter 2: Build a Database Class and Simple Shopping Cart
	Building the database abstraction class
	Raw query method
	Create method
	Read method
	Select all method
	Delete method
	Update method
	first_of method
	last_of method
	iterate_over method
	searchString method
	Using the convert_to_json method to implement a simple API

	Shopping Cart
	Building the shopping items list
	Item template rendering function

	Adding checkboxes to the Shopping List page
	Cookies in PHP
	Building the Checkout page
	Thank you page

	Installing TCPDF
	Admin for managing purchases
	Summary

	Chapter 3: Building a Social Newsletter Service
	Authentication system
	Creating a social login for members
	Member dashboard
	Marketers dashboard
	Administration system for managing marketers

	Custom template for our newsletter
	Link tracking
	AJAX socket chat for support
	Introduction to socket.io

	Summary

	Chapter 4: Build a Simple Blog with Search Capability using Elasticsearch
	Creating the CRUD and admin system
	Seeding the post table
	What is Elasticsearch?
	Installing Elasticsearch and the PHP client
	Building a PHP Elasticsearch tool

	Adding documents to our Elasticsearch
	Querying Elasticsearch
	Installing Logstash
	Setting up the Logstash configuration
	Installing PHP Redis
	Encoding and decoding JSON messages

	Storing Apache logs in Elasticsearch
	Getting filtered data to display with Highcharts

	Dashboard app for viewing Elasticsearch logs
	Simple search engine with result caching
	Cache basics
	Cache invalidation of Redis data

	Using browser localStorage as cache
	Working with streams
	Storing and searching XML documents using PHP
	Using Elasticsearch to search a social network database
	Displaying randomized search engine results

	Summary

	Chapter 5: Creating a RESTful Web Service
	RESTful basics
	REST architectures
	Common HTTP methods and response codes

	First steps with the Slim framework
	Installing Slim
	A small sample application
	Accepting URL parameters

	Accepting HTTP requests with a message body
	The PSR-7 standard
	Middleware

	Implementing the REST service
	Designing the service
	Bootstrapping the project
	Building the persistence layer with MongoDB
	Adding and retrieving users
	Listing and searching users
	Deleting profiles
	Validating input

	Streams and large files
	Profile image upload
	Using GridFS storage

	Summary

	Chapter 6: Building a Chat Application
	The WebSocket protocol
	First steps with Ratchet
	Architectural considerations
	Getting started
	Testing WebSocket applications
	Playing with the event loop

	Implementing the chat application
	Bootstrapping the project server-side
	Bootstrapping the HTML user interface
	Building a simple chat application
	Receiving messages
	Sending messages
	Testing the application
	Keeping the connection from timing out

	Deployment options
	Bridging Ratchet and PSR-7 applications
	Accessing your application via the web server
	Adding authentication
	Creating the login form
	Checking the authorization
	Connecting users and messages

	Summary

	Chapter 7: Building an Asynchronous Microservice Architecture
	The target architecture
	ZeroMQ patterns
	Request/reply pattern
	Publish/subscribe pattern
	Push/pull pattern

	Bootstrapping the project
	Building the inventory service
	Getting started with ZeroMQ REQ/REP sockets
	Using JsonRPC for communication

	Making the inventory service multithreaded
	Building the checkout service
	Using react/zmq
	Working with promises

	Building the mailing service
	Building the shipping service
	PUSH/PULL for beginners
	Fan-out/fan-in

	Bridging ZeroMQ and HTTP
	Summary

	Chapter 8: Building a Parser and Interpreter for a Custom Language
	How interpreters and compilers work
	Languages and grammars
	Your first PEG parser
	Evaluating expressions
	Building an Abstract Syntax Tree
	Building a better interface
	Evaluating variables
	Adding logical expressions
	Comparisons
	The “and” and “or” operators
	Conditions

	Working with structured data
	Working with objects
	Optimizing the interpreter by adding a compiler
	Verifying performance improvements
	Summary

	Chapter 9: Reactive Extensions in PHP
	An introduction to observables
	Introduction to event loop and ReactiveX
	delay
	defer
	Scheduler
	recursive-scheduler
	map and flatMap
	reduce
	toArray
	merge
	do
	scan
	zip

	Parsing logs through a Reactive scheduler
	Event queues with ReactiveX
	Summary

	Index

